Effects of Eccentric Single-Leg Decline Squat Training Performed With Different Execution Times on Maximal Strength and Muscle Contraction Properties of the Knee Extensor Muscles

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Javier Abián-Vicén ◽  
Fernando Martínez ◽  
Fernando Jiménez ◽  
Pablo Abián
2006 ◽  
Vol 32 (1) ◽  
pp. 74-80 ◽  
Author(s):  
B. S. Shenkman ◽  
E. V. Lyubaeva ◽  
D. V. Popov ◽  
A. I. Netreba ◽  
O. S. Tarasova ◽  
...  

2010 ◽  
Vol 91 (1) ◽  
pp. 123-128 ◽  
Author(s):  
Astrid M. Horstman ◽  
Karin H. Gerrits ◽  
Marijke J. Beltman ◽  
Peter A. Koppe ◽  
Thomas W. Janssen ◽  
...  

2018 ◽  
Vol 125 (2) ◽  
pp. 553-566 ◽  
Author(s):  
Jonathon Senefeld ◽  
Steven B. Magill ◽  
April Harkins ◽  
Alison R. Harmer ◽  
Sandra K. Hunter

Fatiguing exercise is the basis of exercise training and a cornerstone of management of type 2 diabetes mellitus (T2D); however, little is known about the fatigability of limb muscles and the involved mechanisms in people with T2D. The purpose of this study was to compare fatigability of knee extensor muscles between people with T2D and controls without diabetes and determine the neural and muscular mechanisms for a dynamic fatiguing task. Seventeen people with T2D [ten men and seven women: 59.6 (9.0) yr] and twenty-one age-, body mass index-, and physical activity-matched controls [eleven men and ten women: 59.5 (9.6) yr] performed one hundred twenty high-velocity concentric contractions (one contraction/3 s) with a load equivalent to 20% maximal voluntary isometric contraction (MVIC) torque with the knee extensors. Transcranial magnetic stimulation (TMS) and electrical stimulation of the quadriceps were used to assess voluntary activation and contractile properties. People with T2D had larger reductions than controls in power during the fatiguing task [42.8 (24.2) vs. 26.4 (15.0)%; P < 0.001] and MVIC torque after the fatiguing task [37.6 (18.2) vs. 26.4 (12.1)%; P = 0.04]. People with T2D had greater reductions than controls in the electrically evoked twitch amplitude after the fatiguing task [44.0 (20.4) vs. 35.4 (12.1)%, respectively; P = 0.01]. However, the decrease in voluntary activation was similar between groups when assessed with electrical stimulation [12.1 (2.6) vs. 12.4 (4.4)% decrease; P = 0.84] and TMS ( P = 0.995). A greater decline in MVIC torque was associated with larger reductions of twitch amplitude ( r2 = 0.364, P = 0.002). Although neural mechanisms contributed to fatigability, contractile mechanisms were responsible for the greater knee extensor fatigability in men and women with T2D compared with healthy controls. NEW & NOTEWORTHY Transcranial magnetic stimulation and percutaneous muscle stimulation were used to determine the contributions of neural and contractile mechanisms of fatigability of the knee extensor muscles after a dynamic fatiguing task in men and women with type 2 diabetes (T2D) and healthy age-, body mass index-, and physical activity-matched controls. Although neural and contractile mechanisms contributed to greater fatigability of people with T2D, fatigability was primarily associated with impaired contractile mechanisms and glycemic control.


2020 ◽  
Vol 29 (5) ◽  
pp. 583-587
Author(s):  
Pier Paolo Mariani ◽  
Luca Laudani ◽  
Jacopo E. Rocchi ◽  
Arrigo Giombini ◽  
Andrea Macaluso

Context: All rehabilitative programs before anterior cruciate ligament (ACL) reconstructive surgery, which are focused on recovery of proprioception and muscular strength, are defined as prehabilitation. While it has shown that prehabilitation positively affects the overall outcome after ACL reconstruction, it is still controversial whether preoperatively enhancing quadriceps strength has some beneficial effect on postoperative strength, mainly during the first period. Objective: To determine whether there is any relationship between preoperative and early postoperative quadriceps strength. Design: Case control. Setting: University research laboratory. Participants: Fifty-nine males (18–33 y; age: 23.69 [0.71] y) who underwent ACL reconstruction with patellar-tendon autograft were examined the day before surgery, and at 60 and 90 days after surgery. Main Outcome Measures: The limb symmetry index (LSI) was quantified for maximal voluntary isometric contraction of the knee extensor muscles and of the knee flexor muscles at 90° joint angle. A k-means analysis was performed on either quadriceps or hamstrings LSI before surgery to classify the patients in high and low preoperative LSI clusters. Differences in postoperative LSI were then evaluated between the high and low preoperative LSI clusters. Results: Following surgery, there were no differences in the quadriceps LSI between patients with high and low preoperative quadriceps LSI. Sixty days after surgery, the hamstrings LSI was higher in patients with high than low preoperative hamstrings LSI (84.0 [13.0]% vs 75.4 [15.9]%; P < .05). Conclusions: Findings suggest that quadriceps strength deficit is related to the ACL injury and increases further after the reconstruction without any correlation between the preoperative and postoperative values. Therefore, it appears that there is no need to delay surgery in order to increase the preoperative quadriceps strength before surgery.


Sign in / Sign up

Export Citation Format

Share Document