Effects of Static Stretching in Warm-Up on Repeated Sprint Performance

2009 ◽  
Vol 23 (7) ◽  
pp. 2155-2162 ◽  
Author(s):  
Aaron Y Sim ◽  
Brian T Dawson ◽  
Kym J Guelfi ◽  
Karen E Wallman ◽  
Warren B Young
2009 ◽  
Vol 12 ◽  
pp. S60 ◽  
Author(s):  
B. Dawson ◽  
A. Sim ◽  
K. Wallman ◽  
K. Guelfi ◽  
W. Young

2020 ◽  
Vol 72 (1) ◽  
pp. 161-172 ◽  
Author(s):  
Piotr Zmijewski ◽  
Patrycja Lipinska ◽  
Anna Czajkowska ◽  
Anna Mróz ◽  
Paweł Kapuściński ◽  
...  

AbstractThis randomized cross-over study examined the effects of typical static and dynamic stretching warm-up protocols on repeated-sprint performance. Thirteen young female handball players performed a 5 min aerobic warm-up followed by one of three stretching protocols for the lower limbs: (1) static stretching, (2) dynamic-ballistic stretching, and (3) no stretching before performing five all-out sprints on a cycle ergometer. Each protocol was performed on a different occasion, separated by 2-3 days. Range of movement (ROM) was also measured before and after the warm-up protocols with a sit-and-reach test. Fixed and random effects of each stretching protocol on repeated sprint performance were estimated with mixed linear modeling and data were evaluated via standardization and magnitude-based inferences. In comparison to no stretching, there were small increases in ROM after dynamic stretching (12.7%, ±0.7%; mean, ±90% confidence limits) and static stretching (19.2%, ±0.9%). There were small increases in the average power across all sprints with dynamic stretching relative to static stretching (3.3%, ±2.4%) and no stretching (3.0%, ±2.4%) and trivial to small increases in the average power in the 1st and 5th trials with dynamic stretching compared to static stretching (3.9%, ±2.6%; 2.6%, ±2.6%, respectively) and no stretching (2.0%, ±2.7%; 4.1%, ±2.8%, respectively). There were also trivial and small decreases in power across all sprints with static relative to dynamic stretching (-1.3%, ±2.8%) and no stretching (-3.5%, ±2.9%). Dynamic stretching improved repeated-sprint performance to a greater extent than static stretching and no stretching.


2017 ◽  
Vol 01 (03) ◽  
pp. E101-E106 ◽  
Author(s):  
Daniel Marinho ◽  
Maria Gil ◽  
Mario Cardoso Marques ◽  
Tiago Barbosa ◽  
Henrique Neiva

AbstactThe present study aimed to examine the effects of using static or dynamic stretching added to the common warm-up routine for short sprint distances and to repeated sprint performance. In 3 different sessions, 16 college-age men (n=10) and women (n=6) performed one of 3 warm-ups followed by a 2×60 m dash sprint time trial (5 min of rest) in a counterbalanced design. The control warm-up consisted of 10 min of light-intensity running, and the 2 experimental warm-ups included a static or dynamic stretching routine (5 exercises) in the control warm-up. Performance (time) and physiological variables (tympanic temperature, heart rate) were monitored. In the first 60 m time trial, there were no differences between the 3 warm-ups tested (F=0.21, p=0.73; ηp 2=0.01), as opposed to that observed in the second (F=7.04, p<0.01; ηp 2=0.32). The participants were 1.7% faster after the static stretching warm-up compared with the control warm-up. The sum of the time performed in the 2 sprints emphasizes these results, with better performances after the static stretching warm-up than the control (1%) or dynamic stretching warm-up (0.7%). These results suggest that including a set of static or dynamic stretching exercises may enhance sprinting performance. The better performance in the second trial after the warm-up including static stretching suggests that this type of stretching may positively influence repeated sprint performance (<10 s sprint).


Author(s):  
Thomas J. O’Brien ◽  
Simon J. Briley ◽  
Barry S. Mason ◽  
Christof A. Leicht ◽  
Keith Tolfrey ◽  
...  

Purpose: To compare the effects of typical competition versus high-intensity intermittent warm-up (WU) on thermoregulatory responses and repeated sprint performance during wheelchair rugby game play. Methods: An intermittent sprint protocol (ISP) simulating the demands of wheelchair rugby was performed by male wheelchair rugby players (7 with cervical spinal cord injury [SCI] and 8 without SCI) following 2 WU protocols. These included a typical competition WU (control) and a WU consisting of high-intensity efforts (INT). Core temperature (Tcore), thermal sensation, and thermal comfort were recorded. Wheelchair performance variables associated to power, speed, and fatigue were also calculated. Results: During the WU, Tcore was similar between conditions for both groups. During the ISP, a higher Tcore was found for SCI compared to NON-SCI (38.1 [0.3] vs 37.7 [0.3] °C: P = .036, d = 0.75), and the SCI group experienced a higher peak Tcore for INT compared with control (39.0 [0.4] vs 38.6 [0.6] °C; P = .004). Peak Tcore occurred later in the ISP for players with SCI (96 [5.8] vs 48 [2.7] min; P < .001). All players reported a higher thermal sensation and thermal comfort following INT (P < .001), with no differences between conditions throughout the ISP. No significant differences were found in wheelchair performance variables during the ISP between conditions (P ≥ .143). Conclusions: The high-INT WU increased thermal strain in the SCI group during the ISP, potentially due to increased metabolic heat production and impaired thermoregulation, while not impacting on repeated sprint performance. It may be advisable to limit high-INT bouts during a WU in players with SCI to mitigate issues related to hyperthermia in subsequent performance.


2013 ◽  
Vol 27 (7) ◽  
pp. 2034-2038 ◽  
Author(s):  
Jonathan M. Taylor ◽  
Matthew Weston ◽  
Matthew D. Portas

2021 ◽  
Vol 35 (1) ◽  
pp. 147-153 ◽  
Author(s):  
Samuel López Mariscal ◽  
Víctor Sánchez Garcia ◽  
José C. Fernández-García ◽  
Eduardo Sáez de Villarreal

2011 ◽  
Vol 25 (3) ◽  
pp. 838-845 ◽  
Author(s):  
Pui-Lam Wong ◽  
Patrick W C Lau ◽  
De Wei Mao ◽  
Yao Yu Wu ◽  
David G Behm ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document