Benzoylecgonine (Cocaine Metabolite) Detection in Hair Samples of Jail Detainees Using Radioimmunoassay (RIA) and Gas Chromatography/Mass Spectrometry (GC/MS)

1991 ◽  
Vol 36 (4) ◽  
pp. 13133J ◽  
Author(s):  
Scott A. Reuschel ◽  
Frederick P. Smith
Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2501 ◽  
Author(s):  
Nam Hee Kwon ◽  
Yu Rim Lee ◽  
Hee Seung Kim ◽  
Jae Chul Cheong ◽  
Jin Young Kim

Sample preparation is an important step in the isolation of target compounds from complex matrices to perform their reliable and accurate analysis. Hair samples are commonly pulverized or processed as fine cut, depending on preference, before extraction by techniques such as solid-phase extraction (SPE), liquid–liquid extraction, and other methods. In this study, a method based on hybrid solid-phase extraction (hybridSPE) and gas chromatography–mass spectrometry (GC–MS) was developed and validated for the determination of methamphetamine (MA) and amphetamine (AP) in hair. The hair samples were mechanically pulverized after washing with de-ionized water and acetone. The samples were then sonicated in methanol at 50 °C for 1 h and centrifuged at 50,000× g for 3 min. The supernatants were transferred onto the hybridSPE cartridge and extracted using 1 mL of 0.05 M methanolic hydrogen chloride. The combined solutions were evaporated to dryness, derivatized using pentafluoropropionic anhydride, and analyzed by GC–MS. Excellent linearity (R2 > 0.9998) was achieved in the ranges of 0.05–5.0 ng/mg for AP and 0.1–10.0 ng/mg for MA. The recovery was 83.4–96.8%. The intra- and inter-day accuracies were −9.4% to 5.5% and −5.1% to 3.1%, while the intra- and inter-day precisions were within 8.3% and 6.7%, respectively. The limits of detections were 0.016 ng/mg for AP and 0.031 ng/mg for MA. The validated hybridSPE method was applied to dyed hair for MA and AP extraction and compared to a methanol extraction method currently being used in our laboratory. The results showed that an additional hybridSPE step improved the recovery by 5.7% for low-concentration quality control (QC) samples and by 24.1% for high-concentration QC samples. Additionally, the hybridSPE method was compared to polymeric reversed-phase SPE methods, and the absolute recoveries for hybridSPE were 50% and 20% greater for AP (1.5 ng/mg) and MA (3.0 ng/mg), respectively. In short, the hybridSPE technique was shown to minimize the matrix effects, improving GC–MS analysis of hair. Based on the results, the proposed method proved to be effective for the selective determination of MA and AP in hair samples.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mohsin Ahmad Ghauri ◽  
Fahad Hassan ◽  
Younusa Hassan ◽  
Naveel Atif ◽  
Ahmad Adnan

Abstract Background The analysis of hair samples for the detection of drugs has become one of the convincing strategies in the field of forensic toxicology. A large number of cases concerning heroin abuse or its byproducts have been documented under the Control of Narcotic Substances Act, 1997, over the past decade. The present study was carried out with an aim to evaluate the primary metabolite of heroin, i.e., 6-monoacetylemorphine (6-MAM), in hair samples of addicts and subjects undergoing rehabilitation, thereafter accessing the success rate of the rehabilitation program at the de-addiction center. Results Hair samples were randomly collected from 20 regular heroin addicts and 20 heroin addicts from their past, from the rehabilitation center, of different age groups. Samples were cleaned, digested, and extracted using an alkaline digestion mediator methyl tertiary butyl ether, followed by quantification of 6-MAM via gas chromatography–mass spectrometry (GC–MS). The mean concentration of 6-MAM in regular heroin addicts detected was 7.80 ng/mg and 2.34 ng/mg in samples of subjects undergoing rehabilitation at the de-addiction center, respectively. Conclusion Traces of 6-MAM in the hair sample of heroin addicts can be efficiently detected days after the last intake of heroin. In addition to that, our findings also give an idea for future evaluating the approximate timeframe for detection of 6-MAM and/or other metabolites of heroin in the hair sample. However, in the future, by carefully analyzing the hair samples that can be taken from rehabilitation centers from target subjects at different time intervals, the exact duration of traceable quantity of 6-MAM can be determined in the hair sample. Finally, it can be concluded that there is a significant success rate of the rehabilitation program at de-addiction centers in connection with dragging the 6-MAM level from the body.


Author(s):  
Pham Quoc Chinh ◽  
Pham Thi Thu Ha ◽  
Nguyen Mai Dung ◽  
Vu Huu Phuoc ◽  
Vu Duc Loi ◽  
...  

This article develops a combined solid phase extraction (SPE) and gas chromatography – mass spectrometry (GC-MS) procedure for determining amphetamine-type stimulants Amphetamine (AM) and Methamphetamine (MA) in human hair. Hair samples were incubated in methanol containing 1% hydrochloric acid in 18 hours and then subjected to SPE. The obtained extracts were evaporated to dryness, derivatized with heptafluorobutyric anhydride (HFBA) at 70 °C for 30 minutes prior to GC–MS analysis. Gas chromatography mass spectrometry was run on HP5-MS column (30 m × 0.25 mm × 0.25 µm) with detector MS 5975C. Experimentally, the proposed method proved sensitive, simple and time-saving, but quite accurate with a low limit of detection (LOD = 0.05ng/mg) and quantitation (LOQ = 0.15ng/mg). Keywords: SPE, GC – MS, hair samples, amphetamine, methamphetamine. References [1] Ming-Ren Fuh, Ti-Yu Wu and Tzuen-Yeuan Lin, Determination of amphetamine and methamphetamine in urine by solid phase extraction and ion-pair liquid chromatography–electrospray–tandem mass spectrometry Talanta, 68 (3) (2006), 987-991. https://doi.org/10.1016/j.talanta.2005.06.057[2] Naresh C. Jain, Thomas C. Sneath, and Robert D. Budd, Rapid Gas-Chomatographic Determination of Amphetamine and Methamphetamine in urine, Clinical Chemistry, 20 (11) (1974) 1460-1462. https://doi.org/10.1093/clinchem/20.11.1460.[3] Dong-liang Lin, Rea-Ming Yin, Ray H. Liu, Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Amphetamine, Methamphetamine, 3,4-Methylenedioxy- amphetamine and 3,4-Methylenedioxymethamphetamine in Human Hair and Hair Sections, Journal of Food and Drug Analysis, 13(2) (2005) 193-200. https://doi.org/10.38212/2224-6614.2526[4] María Jesús Tabernero, Maria Linda Felli, Ana María Bermejo, Marcello Chiarotti, Determination of ketamine and amphetamines in hair by LC/MS/MS, Anal Bioanal Chem, 395(2009), 2547–2557. https://doi.org/10.1007/s00216-009-3163-4.[5] D.V. Doan, D.Q. Huy, N.D. Hue, T.M. Tri, Determination of methamphetamine in urine samples by gas chromatography mass spectrometry combined with solid phase extraction technique, Journal of Science and Technology 47 (6) (2009) 53-58 (in Vietnamese).[6] Rodger L. Foltz, Allison F. Fentiman, Ruth B. Foltz, GC/MS Assays for Abused Drugs in Body Fluids, National Institute on Drug Abuse, Maryland, 1980.[7] AOAC, Appendix F: Guidelines for Standard Method Performance Requirements, AOAC official methods of analysis, Maryland, 2016.[8] Eunyoung Han, Martin P. Paulus, Marc Wittmann, Heesun Chung, Joon myong Song, Hair analysis and self-report of methamphetamine use by methamphetamine dependent individuals, Journal of Chromatography B, 879 (2011) 541–547. https://doi.org/10.1016/j.jchromb.2011.01.002.      


1999 ◽  
Vol 45 (9) ◽  
pp. 1485-1494 ◽  
Author(s):  
Robert Kronstrand ◽  
Sophie Förstberg-Peterson ◽  
Bertil KÅgedal ◽  
Johan Ahlner ◽  
Göran Larson

Abstract Background: Analysis of drugs in hair has been used on a qualitative basis to estimate earlier exposure to drugs. Clinical applications are rare because of the lack of dose–response relationships in the studies performed to date, and questions remain regarding the mechanisms of drug incorporation into hair. Several human studies have shown differences in drug accumulation between pigmented and nonpigmented hair. However, the melanin concentration in hair was not determined and correlated to the amount of drug incorporated. Methods: Nine human subjects were given codeine as a single oral dose, and plasma codeine concentrations were determined for 24 h, using gas chromatography–mass spectrometry. Hair samples were obtained weekly for a month. Total melanin, eumelanin, and codeine were measured quantitatively in hair samples by spectrophotometry, HPLC, and gas chromatography–mass spectrometry, respectively. Results: There was an exponential relationship between codeine and melanin concentrations in hair, (r2 = 0.95 with total melanin and r2 = 0.83 with eumelanin). After normalizing the results by the area under the curve for codeine in plasma, we obtained r2 = 0.86 for codeine vs total melanin and r2 = 0.90 vs eumelanin. Conclusions: Our results stress the importance of melanin determination when measuring drugs in hair. We postulate that analysis of drug concentration in hair may be worthwhile in the monitoring of drug compliance if the results are normalized for melanin content.


2015 ◽  
Vol 407 (29) ◽  
pp. 8725-8734 ◽  
Author(s):  
Julia Martín ◽  
Monika Möder ◽  
Alexander Gaudl ◽  
Esteban Alonso ◽  
Thorsten Reemtsma

Sign in / Sign up

Export Citation Format

Share Document