A Simple Approach to Performing Large Strain Cyclic Simple Shear Tests: Methodology and Experimental Results

2018 ◽  
Vol 46 (6) ◽  
pp. 20170172 ◽  
Author(s):  
Waqas Muhammad ◽  
Jidong Kang ◽  
Raja K. Mishra ◽  
Kaan Inal
Author(s):  
Mustapha Abdellaziz ◽  
Mourad Karray ◽  
Jeudy Betegard ◽  
Pascal Locat ◽  
Catherine Ledoux ◽  
...  

The assessment of the strain rate effect on the geotechnical properties of soils constitutes an important step toward a more accurate analysis of their response. This study presents the experimental results of monotonic and cyclic simple shear tests performed to examine the strain rate effect on the behavior of eastern Canada soils. Eight natural soils sampled from different locations in eastern Canada were used in this study. The tests were performed on a simple shear device using a strain-controlled mode. In addition to the obtained experimental results, published data in the literature were used to draw the conclusions of this study. Analysis of the data indicates that the undrained shear strength increases proportionally with the strain rate by approximately 10–17% per log cycle of . The results also show that the secant shear modulus G increases with the strain rate, especially at large strain amplitude. Moreover, the analysis of the data revealed that the magnitude of the strain rate effect seems to be correlated with the shear strain amplitude and plasticity index (Ip). A practical application of the outcomes on the backbone curves is given in which illustrates the influence of and on the strain rate effect.


Géotechnique ◽  
1988 ◽  
Vol 38 (4) ◽  
pp. 533-555 ◽  
Author(s):  
G. de Jong de Josselin
Keyword(s):  

2020 ◽  
Vol 44 (5) ◽  
pp. 20190471
Author(s):  
M. Konstadinou ◽  
A. Bezuijen ◽  
G. Greeuw ◽  
C. Zwanenburg ◽  
H. M. Van Essen ◽  
...  

2018 ◽  
Vol 85 (12) ◽  
Author(s):  
Kelin Chen ◽  
Stelios Kyriakides ◽  
Martin Scales

The shear stress–strain response of an aluminum alloy is measured to a shear strain of the order of one using a pure torsion experiment on a thin-walled tube. The material exhibits plastic anisotropy that is established through a separate set of biaxial experiments on the same tube stock. The results are used to calibrate Hill's quadratic anisotropic yield function. It is shown that because in simple shear the material axes rotate during deformation, this anisotropy progressively reduces the material tangent modulus. A parametric study demonstrates that the stress–strain response extracted from a simple shear test can be influenced significantly by the anisotropy parameters. It is thus concluded that the material axes rotation inherent to simple shear tests must be included in the analysis of such experiments when the material exhibits anisotropy.


2018 ◽  
Vol 31 (1) ◽  
pp. 33-45 ◽  
Author(s):  
Emilio Barchiesi ◽  
Gregor Ganzosch ◽  
Christian Liebold ◽  
Luca Placidi ◽  
Roman Grygoruk ◽  
...  

2018 ◽  
Vol 19 (10) ◽  
pp. 3045 ◽  
Author(s):  
Takehito Kikuchi ◽  
Yusuke Kobayashi ◽  
Mika Kawai ◽  
Tetsu Mitsumata

Magnetorheological elastomers (MREs) are stimulus-responsive soft materials that consist of polymeric matrices and magnetic particles. In this study, large-strain response of MREs with 5 vol % of carbonyl iron (CI) particles is experimentally characterized for two different conditions: (1) shear deformation in a uniform magnetic field; and (2), compression in a heterogeneous uniaxial magnetic field. For condition (1), dynamic viscoelastic measurements were performed using a rheometer with a rotor disc and an electric magnet that generated a uniform magnetic field on disc-like material samples. For condition (2), on the other hand, three permanent magnets with different surface flux densities were used to generate a heterogeneous uniaxial magnetic field under cylindrical material samples. The experimental results were mathematically modeled, and the relationship between them was investigated. We also used finite-element method (FEM) software to estimate the uniaxial distributions of the magnetic field in the analyzed MREs for condition (2), and developed mathematical models to describe these phenomena. By using these practicable techniques, we established a simple macroscale model of the elastic properties of MREs under simple compression. We estimated the elastic properties of MREs in the small-strain regime (neo–Hookean model) and in the large-strain regime (Mooney–Rivlin model). The small-strain model explains the experimental results for strains under 5%. On the other hand, the large-strain model explains the experimental results for strains above 10%.


Sign in / Sign up

Export Citation Format

Share Document