Radiation Effects on the Mechanical Properties of SA 508 Cl.3 Forging

Author(s):  
PP Milella ◽  
A Pini ◽  
CW Marschall
Carbon ◽  
1973 ◽  
Vol 11 (5) ◽  
pp. 547-553 ◽  
Author(s):  
R.E. Bullock ◽  
E.L. McKague

1985 ◽  
Vol 133-134 ◽  
pp. 501-505
Author(s):  
Y. Aono ◽  
H. Abe ◽  
E. Kuramoto ◽  
N. Tsukuda ◽  
M. Takenaka ◽  
...  

2011 ◽  
Vol 414 (2) ◽  
pp. 286-302 ◽  
Author(s):  
Keith J. Leonard ◽  
Jeremy T. Busby ◽  
Steven J. Zinkle

2006 ◽  
Vol 81 (20-22) ◽  
pp. 2433-2441 ◽  
Author(s):  
K. Humer ◽  
K. Bittner-Rohrhofer ◽  
H. Fillunger ◽  
R.K. Maix ◽  
R. Prokopec ◽  
...  

Author(s):  
Jae Min Sim ◽  
Yoon-Suk Chang ◽  
Byeong Seo Kong ◽  
Changheui Jang

Abstract While austenitic stainless steels (ASSs) have been widely adopted for reactor vessel internals because of their excellent material properties, diverse ageing-related degradation may occur due to high temperature, corrosive and neutron radiation environments during operation. In particular, since the change of mechanical properties is a major concern in long-term operation but it is difficult to prepare and handle standard specimens influenced by neutrons, most of experimental researches for enhanced understanding of the radiation effects have been focused on high-energetic ion-irradiation and tests of small specimens. In this study, systematic finite element analyses were carried out to quantify changing mechanical properties based on both virgin and ion-irradiated nanoindentation test data of typical ASS material. First of all, numerical analysis was carried out to obtain unirradiated material constitutive parameters by using trial set along the miniature specimen and comparing test data, and then indentation stress-strain (ISS) curve was derived. Subsequently, ISS was converted into uniaxial stress-strain response taking into account simple correlation. Finally, with regard to the irradiated material, similar analytical procedures were established. 304 SS was irradiated with 2 MeV proton and radioactivity is being measured. Comparison between analysis result and experimental one will be carried out, of which details and key findings will be discussed.


2021 ◽  
pp. 153025
Author(s):  
L.T. Chen ◽  
X.T. Ren ◽  
Y.N. Mao ◽  
J.J. Mao ◽  
X.Y. Zhang ◽  
...  

The mechanical properties (limit of forced elasticity, fracture stress, total deformation to failure and its components) of a 75 mm-thick polyimide film of kapton H type under uniaxial tension conditions at 293 K after exposure to the outer space factors were studied. The electromagnetic radiation of the transatmospheric Sun in the wavelength range of 250-2500 nm (EMRS) for 100 hours and vacuum ultraviolet (VUV) and ultra soft x-ray (USX) radiation in the range of 1.24-170 nm – for 100 and 500 hours were simulated under laboratory conditions. The effect of separate exposure in each of the wavelength ranges was investigated. It was found that after irradiation in the both wavelength ranges the films remained in a forced-elastic state. The tension diagrams, like in the initial state, have two stages. The contributions of the elastic, irreversible and highly elastic (delayed and reversible at test temperature) components to the total deformation to failure were determined. It was found that the limit of forced elasticity increased after irradiation both with EMRS, and with VUV and USX radiation. In this case an increase in the limit of the forced elasticity under the influence of EMRS was caused by heating of the film in the course of irradiation, and under the influence of VUV and USX radiation – by radiation effects. The fracture stress and total deformation to failure change weakly and only under the influence of VUV and USX radiation. With changing the duration of exposure to VUV and USX radiation (100 or 500 hours), the fracture stress and the total deformation to failure change non-monotonously. The negative consequence of exposure to VUV and USX radiation is the contribution values redistribution of the individual components of the total deformation to failure. VUV and USX radiation within 500 hours leads to a halving of the contribution of elastic deformation, which is reversible at deformation temperature.


2020 ◽  
Vol 4 (394) ◽  
pp. 89-98
Author(s):  
Sergei I. Emelyanov ◽  
Nikolay L. Kuchin ◽  
Boris A. Yartsev ◽  
Vladimir L. Lebedev

Object and purpose of research. This paper discusses polymeric composites of various structural applications that may be exposed to extreme temperature and/or radiation, with possible implications for their physical and mechanical properties. Materials and methods. We used static and dynamic methods for determining the constants characterizing the mechanical properties of polymer composites. The analysis of numerous nuclear reactions occurring during neutron irradiation of a polymer composite with a certain chemical composition was carried out by the method of computational prediction. The results of this analysis confirm the change in the composition of the composite and the possibility of changing its internal structure. Main results. Suitability of the investigated composites for the applications accompanied by high-temperature and radiation effects, like foundations of marine nuclear reactors, has been confirmed. Conclusion. For the considered range of temperature and radiation effects, the effect of temperature on structural performance of a composite determined, in its turn, by the mechanical properties of its matrix, is the most significant, while radiation exposure turned out to be less important. Developing polymer composites for more intense radiation environments, like neutron fluxes or gamma rays, it is advisable to optimize their chemistry so as to reduce or totally eliminate the elements capable of generating long-lived radionuclides.


Sign in / Sign up

Export Citation Format

Share Document