Composite Interlaminar Fracture Toughness: Three-Dimensional Finite-Element Modeling for Mixed Mode I, II, and Fracture

Author(s):  
PLN Murthy ◽  
CC Chamis
Author(s):  
Mark Cohen ◽  
Xin Wang

In this paper, extensive three-dimensional finite element analysis is conducted to study the asymmetric four-point shear (AFPS) specimen: a widely used mixed mode I/II fracture test specimen. Complete solutions of fracture mechanics parameters KI, KII, KIII, T11, and T33 have been obtained for a wide range of a/W and t/W geometry combinations. It is demonstrated that the thickness of the specimen has a significant effect on the variation of fracture parameter values. Their effects on crack tip plastic zone are also investigated. The results presented here will be very useful for the toughness testing of materials under mixed-mode loading conditions.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


2000 ◽  
Vol 123 (2) ◽  
pp. 191-197 ◽  
Author(s):  
Y. Shindo ◽  
K. Horiguchi ◽  
R. Wang ◽  
H. Kudo

An experimental and analytical investigation in cryogenic Mode I interlaminar fracture behavior and toughness of SL-E woven glass-epoxy laminates was conducted. Double cantilever beam (DCB) tests were performed at room temperature (R.T.), liquid nitrogen temperature (77 K), and liquid helium temperature (4 K) to evaluate the effect of temperature and geometrical variations on the interlaminar fracture toughness. The fracture surfaces were examined by scanning electron microscopy to verify the fracture mechanisms. A finite element model was used to perform the delamination crack analysis. Critical load levels and the geometric and material properties of the test specimens were input data for the analysis which evaluated the Mode I energy release rate at the onset of delamination crack propagation. The results of the finite element analysis are utilized to supplement the experimental data.


Sign in / Sign up

Export Citation Format

Share Document