A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates Under Variable-Amplitude Loading

2009 ◽  
pp. 63-63-23 ◽  
Author(s):  
AU de Koning
2014 ◽  
Vol 891-892 ◽  
pp. 1729-1735
Author(s):  
Mustapha Benachour ◽  
Boumedienne Zeggai ◽  
Nadjia Benachour ◽  
Mohamed Benguediab ◽  
Abdelkader Belmokhtar

In this investigation, variable amplitude loading effect was studied on aged hardening Al-alloys in series 2000 and 7000. Generalised Willenborg model was used in order to show loading interaction effects (overload effects). Variable amplitude loading under different form of spectrum has affected highly the fatigue life and fatigue crack growth rates. Fatigue lives were increased and fatigue crack growth rates (FCGRs) were decreased in increasing of overload ratio in single overload case. In application of overload band, the fatigue lives and FCGRs were affected by band overload and R-ratio of them when level in FCGRs was increased.


2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Kisaburo Azuma ◽  
Shinjiro Hidaka ◽  
Yasuhiro Yamazaki

Abstract Low-alloy steels are extensively used in pressure boundary components of nuclear power plants. The structural integrity of the components made of low-alloy steels can be evaluated by the flaw evaluation procedure provided by Section XI of the ASME Boiler and Pressure Vessel Code. According to the Code, the stress intensity factor range ΔK can be used to determine the fatigue crack growth rates of the material. However, it has been reported that the fatigue crack growth rate under severe reversing loads is also strongly influenced by crack closure behavior. This paper discusses the relation between applied stresses and the fatigue crack growth rate for cracks in low-alloy steels exposed to air. Compressive-tensile cyclic loadings are applied to center-notched plates to obtain the fatigue crack growth curves. The test data demonstrate that effective stress intensity factor range predicted by our closure model described the crack growth property more accurately. A comparison among crack closure models indicates that our crack closure model is suitable to predict the crack growth rates when low constraint conditions are assumed at the crack tip due to severe reversing loads.


Author(s):  
Kunio Hasegawa ◽  
Vratislav Mares ◽  
Yoshihito Yamaguchi ◽  
Yinsheng Li

Reference curves of fatigue crack growth rates for ferritic steels in air environment are provided by the ASME Code Section XI Appendix A. The fatigue crack growth rates under negative R ratio are given as da/dN vs. Kmax, It is generally well known that the growth rates decreases with decreasing R ratios. However, the da/dN as a function of Kmax are the same curves under R = 0, −1 and −2. In addition, the da/dN increases with decreasing R ratio for R < −2. This paper converts from da/dN vs. Kmax to da/dN vs. ΔKI, using crack closure U. It can be obtained that the growth rates da/dN as a function of ΔKI decrease with decreasing R ratio for −2 ≤ R < 0. It can be seen that the growth rate da/dN vs. ΔKI is better equation than da/dN vs. Kmax from the view point of stress ratio R. Furthermore, extending crack closure U to R = −5, it can be explained that the da/dN decreases with decreasing R ratio in the range of −5 ≤ R < 0. This tendency is consistent with the experimental data.


2003 ◽  
Vol 806 ◽  
Author(s):  
Peter A. Hess ◽  
Reinhold H. Dauskardt

ABSTRACTFatigue crack propagation mechanisms of bulk metallic glasses (BMGs) are not well understood, limiting their use in safety-critical structural applications particularly where complex fatigue loading may occur. Accordingly, the present study examines the effects of variable amplitude fatigue loading associated with block loading and tensile overloads on fatigue crack-growth rates in a Zr-based BMG. Crack growth studies were conducted on compact tension specimens using computer control of the applied stress intensity range, ΔK. Fatigue crack closure loads, which represent the initial contact of mating crack surfaces during the unloading cycle, were continuously monitored during testing. Abrupt drops in ΔK were found to significantly decrease fatigue crack-growth rates far below equilibrium values, arresting growth completely at a ΔK twice the nominal fatigue threshold ΔKTH. Conversely, an abrupt increase in ΔK was found to accelerate fatigue crack-growth rates. The effects of roughness-induced crack closure were assessed and found to be consistent with the suppression or acceleration of growth rates. However, in order to fully explain the observed transient growth rate response, other mechanisms that may be related to the fatigue mechanism itself were also considered. Specifically, the nature of the fatigue crack tip damage zone was also investigated. As BMGs lack distributed plasticity at low temperatures, the plastic zone differs greatly from that seen in ductile crystalline materials, and its role in fatigue crack propagation mechanisms is examined.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Kunio Hasegawa ◽  
Vratislav Mares ◽  
Yoshihito Yamaguchi

Reference curves of fatigue crack growth rates for ferritic steels in air environment are provided by the ASME Code Section XI Appendix A. The fatigue crack growth rates under negative R ratio are given as da/dN versus Kmax. It is generally well known that the growth rates decreases with decreasing R ratios. However, the da/dN as a function of Kmax are the same curves under R = 0, −1, and −2. In addition, the da/dN increases with decreasing R ratio for R < −2. This paper converts from da/dN versus Kmax to da/dN versus ΔKI, using crack closure U. It can be obtained that the growth rates da/dN as a function of ΔKI decrease with decreasing R ratio for −2 ≤ R < 0. It can be seen that the growth rate da/dN versus ΔKI is better equation than da/dN versus Kmax from the view point of stress ratio R. Furthermore, extending crack closure U to R = −5, it can be explained that the da/dN decreases with decreasing R ratio in the range of −5 ≤ R < 0. This tendency is consistent with the experimental data.


2018 ◽  
Vol 165 ◽  
pp. 13005 ◽  
Author(s):  
Jose Ramirez ◽  
Gabriel P. Potirniche ◽  
Henry Pugesek ◽  
Nicholas Shaber ◽  
Martin Taylor ◽  
...  

This paper reports on a computational study and experimental validation of creep-fatigue crack growth rates at high temperature in two structural materials. The objectives are to develop a methodology to predict creep-fatigue crack growth rates using plasticity-induced crack closure under creep-fatigue loading conditions by characterizing the effect of hold time on crack growth rates during cyclic loading. In this study, the computation of fatigue crack growth rates is based on the crack closure phenomenon. The total crack growth rate during creep-fatigue loading is based on the addition of fatigue crack growth rate during cyclic loading and creep crack growth rate during hold time. The study identifies the effects of frequency and shape of loading cycle on crack-tip opening stresses induced by the combined action of the plasticity-induced crack closure and creep relaxation at the crack tip. Two-dimensional finite element analyses of compact tension specimens are performed to simulate crack growth under cyclic and time-dependent loading conditions. Elastic-plastic-creep material behavior is considered in these simulations. Closure levels are computed for high temperature structural materials such as 9Cr-1Mo steel and Alloy 709. The numerical predictions provide satisfactory agreement with experimental data of creep-fatigue crack growth rates in modified 9Cr-1Mo and Alloy 709 steels at high temperatures.


Sign in / Sign up

Export Citation Format

Share Document