On High-Velocity Brittleness and Ductility of Dual-Phase Steel and Some Hybrid Fiber Reinforced Plastics

Author(s):  
K Kawata ◽  
S Hashimoto ◽  
N Takeda ◽  
S Sekino
2011 ◽  
Vol 332-334 ◽  
pp. 1082-1086
Author(s):  
Zhi Yun Wu ◽  
Rui Fang Ni

The multiaxial warp-knit fabrics of glass fiber or carbon fiber as the structure materials have widely applied to many industries. In this study, in order to combined the advantages of these two fibers, glass fiber and carbon fiber were employed as reinforcement materials in RIMR 135 epoxy resins, and hybrid composites were formed. The tensile behavior of hybrid fiber-reinforced plastics (HFRP) were compared with CFRP and GFRP on the longitudinal orientation . The results suggested that HFRP was high tensile strength and modulus of elasticity. Scanning electron microscopy was used to characterize the morphology of damaged surfaces. The micrographs revealed that CF and GF maintained their own tension behavior in the hybrid composite materials as well in the neat FRP materials. The hybrid effect of HFRP was investigated by the hybrid theory, which was compared to the experimental results. It was confirmed that the tensile behavior of the hybrid composite materials matched the plus hybrid effect.


2019 ◽  
pp. 157-169 ◽  
Author(s):  
I. S. Deev ◽  
E. V. Kurshev ◽  
S. L. Lonsky

Studies and experimental data on the microstructure of the surface of samples of epoxy сarbon-fiber-reinforced plastics that have undergone long-term (up to 5 years) climatic aging in different climatic zones of Russia have been conducted: under conditions of the industrial zone of temperate climate (Moscow, MTsKI); temperate warm climate (Gelendzhik, GTsKI); a warm humid climate (Sochi, GNIP RAS). It is established that the determining factor for aging of carbon plastics is the duration of the complex effect of climatic factors: the longer the period of climatic aging, the more significant changes occur in the microstructure of the surface of the materials. The intensity of the aging process and the degree of microstructural changes in the surface of carbon plastics are affected by the features of the climatic zone. general regularities and features of the destruction of the surface of carbon plastics after a long-term exposure to climatic factors have been established on the basis of the analysis and systematization of the results of microstructural studies.


Sign in / Sign up

Export Citation Format

Share Document