Comments on Fatigue Crack Growth Under Mixed Modes I and III and Pure Mode III Loading

2008 ◽  
pp. 249-249-15 ◽  
Author(s):  
LP Pook
1986 ◽  
Vol 35 (395) ◽  
pp. 930-935 ◽  
Author(s):  
Toshimitsu YOKOBORI ◽  
Takeo YOKOBORI ◽  
Kenji ISHII ◽  
Kiyoshi SATO ◽  
Kazuo SHYOJI

Author(s):  
João Ferreira ◽  
José A. F. O. Correia ◽  
Grzegorz Lesiuk ◽  
Sergio Blasón González ◽  
Maria Cristina R. Gonzalez ◽  
...  

Pressure vessels and piping are commonly subjected to plastic deformation during manufacturing or installation. This pre-deformation history, usually called pre-strain, may have a significant influence on the resistance against fatigue crack growth of the material. Several studies have been performed to investigate the pre-strain effects on the pure mode I fatigue crack propagation, but less on mixed-mode (I+II) fatigue crack propagation conditions. The present study aims at investigating the effect of tensile plastic pre-strain on fatigue crack growth behavior (da/dN vs. ΔK) of the P355NL1 pressure vessel steel. For that purpose, fatigue crack propagation tests were conducted on specimens with two distinct degrees of pre-strain: 0% and 6%, under mixed mode (I+II) conditions using CTS specimens. Moreover, for comparison purposes, CT specimens were tested under pure mode I conditions for pre-strains of 0% and 3%. Contrary to the majority of previous studies, that applied plastic deformation directly on the machined specimen, in this work the pre-straining operation was carried out prior to the machining of the specimens with the objective to minimize residual stress effects and distortions. Results revealed that, for the P355NL1 steel, the tensile pre-strain increased fatigue crack initiation angle and reduced fatigue crack growth rates in the Paris region for mixed mode conditions. The pre-straining procedure had a clear impact on the Paris law constants, increasing the coefficient and decreasing the exponent. In the low ΔK region, results indicate that pre-strain causes a decrease in ΔKth.


2012 ◽  
Vol 06 ◽  
pp. 318-323
Author(s):  
A. KUSABA ◽  
S. OKAZAKI ◽  
M. ENDO ◽  
K. YANASE

As recognized, flaking-type failure is one of the serious problems for railroad tracks and bearings. In essence, flaking-type failure is closely related to the growth of the shear-mode (Mode-II and Mode-III) fatigue crack. In our research group, it is demonstrated that a shear-mode fatigue crack can be reproduced for cylindrical specimens by applying the cyclic torsion in the presence of the static axial compressive stress. However, a biaxial servo-hydraulic fatigue testing machine is quite expensive to purchase and costly to maintain. The low testing speed (about 10Hz) of the testing machine further aggravates the situation. As a result, study on shear-mode fatigue crack growth is still in the nascent stage. To overcome the difficulties mentioned above, in this research activity, we developed a high-performance and cost-effective testing machine to reproduce the shear-mode fatigue crack growth by improving the available resonance-type torsion fatigue testing machine. The primary advantage of using the resonance-type torsion fatigue testing machine is cost-efficiency. In addition, the testing speed effectively can be improved, in comparison with that of a biaxial servo-hydraulic fatigue testing machine. By utilizing the newly-designed testing machine, we have demonstrated that we can successfully reproduce the shear-mode fatigue crack.


2014 ◽  
Vol 60 (4) ◽  
pp. 250-254 ◽  
Author(s):  
Marija Blažić ◽  
Stevan Maksimović ◽  
Zlatko Petrović ◽  
Ivana Vasović ◽  
Dragana Turnić

Sign in / Sign up

Export Citation Format

Share Document