scholarly journals A review of precision technologies in pasture-based dairying systems

Author(s):  
L. Shalloo ◽  
T. Byrne ◽  
L. Leso ◽  
E. Ruelle ◽  
K. Starsmore ◽  
...  

The promised benefits of precision technologies (PTs) include improved efficiency, quality, animal health and welfare and reduced environmental impacts. To date, PTs (including sensors, algorithms, big data, decision-support tools, etc.) have had a relatively modest impact in pasture-based dairying systems in comparison with other agricultural sectors such as arable production. The areas animals roam and graze in pasture-based systems and the associated connectivity challenges may, in part at least, explain the comparatively reduced use of PTs in those systems. Thus, there are very few technologies designed specifically to increase pasture utilisation with the exception of global positioning systems (GPS) and Bluetooth-enabled Plate Meters. Terrestrial and satellite-based spectral analysis of pasture biomass and quality is still in the development phase. Therefore, one of the key drivers of efficiency in pasture-based systems has only been marginally impacted by PTs. In contrast, technological development in the area of fertility and heat detection has been important and offers significant potential value to dairy farmers. In general PTs can be described as good at measurement, data collection and storage but fall down around interpretation and providing useful outputs to end users. As a result, it is unclear if farm management is being sufficiently improved to justify widespread adoption of PTs. A needs-driven development of PTs and decision-support tools are required for the succesful integration within agriculture. Further cost/benefit analysis is also required to determine the efficiency of investing in PTs and what, if any, factors affect the variation in the returns.

Author(s):  
Nicola McDonald ◽  
Levente Timar ◽  
Garry McDonald ◽  
Catherine Murray

In the context of infrastructure and natural hazard planning, a new agenda for applied research is emerging which, focused on resilience, integrates government, hazard science, engineering and economics. This paper sets out the context and key tenets guiding the direction of this topic of enquiry, including the New Zealand legislative and policy context under which infrastructure decisions are made, core principles implied by the resilience objective, current norms and challenges in the practice of infrastructure planning, and key criteria for decision-support tools. While decision-making processes strongly informed by cost-benefit analysis (CBA) continue to be common in the New Zealand policy process, this paper demonstrates that there are certain distinguishing features of infrastructure networks that make it challenging to effectively and validly apply standard CBA approaches, particularly when resilience values are at stake. To help address this challenge, a new conceptual framework is presented to assist in the critical review and selection of decision-making tools to support infrastructure planning. This framework provides a synthesis of the ways through which contextual uncertainties influence the relative advantages and appropriateness of different decision support tools. Ultimately, we seek to promote a diverse but also nuanced approach to analysis supporting infrastructure planning under seismic and other natural hazard risk.


2020 ◽  
pp. 323
Author(s):  
Nour Elislam Djedaa ◽  
Abderrezak Moulay Lakhdar

2008 ◽  
Vol 3 (3) ◽  
Author(s):  
M. B. Fernandes ◽  
M. C. Almeida ◽  
A. G. Henriques

Desalination technologies provide an alternative for potable water production, having significant potential for application where fresh water scarcity exists. Potential benefits have to be balanced with other factors, such as high costs, high energy consumption, and significant environmental impacts, for the understanding of real risks and gains of desalination within the context of integrated water resources management. Multiple factors can be considered when analysing the viability of a desalination project but often a limited approach is used. The complexity in the analysis lies in finding the alternatives that obey to multiple objectives (e.g. reduced environmental impact, social acceptance, less cost associated). In this paper, development of a methodology based on multiple criteria decision support system for the evaluation and ranking the potential of desalination technologies is described and applied to a Portuguese case study. Relevant factors to the selection of desalination technologies were identified using SWOT analysis and the MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique) approach was applied. Technical alternatives considered include reverse osmosis and multi-effect desalination (MED), together with energy production by fossil fuels or solar energy. Production of water by conventional approaches was also considered. Results, for non-economic benefits, show higher score for MED solar but, in the cost-benefit analysis, conventional methods of water production have higher ranking since costs of renewable energies are not yet competitive. However, even if not preferred in economic terms, desalination is ranked significantly above the conventional approaches for non-economic criteria.


2007 ◽  
Vol 7 (5-6) ◽  
pp. 53-60
Author(s):  
D. Inman ◽  
D. Simidchiev ◽  
P. Jeffrey

This paper examines the use of influence diagrams (IDs) in water demand management (WDM) strategy planning with the specific objective of exploring how IDs can be used in developing computer-based decision support tools (DSTs) to complement and support existing WDM decision processes. We report the results of an expert consultation carried out in collaboration with water industry specialists in Sofia, Bulgaria. The elicited information is presented as influence diagrams and the discussion looks at their usefulness in WDM strategy design and the specification of suitable modelling techniques. The paper concludes that IDs themselves are useful in developing model structures for use in evidence-based reasoning models such as Bayesian Networks, and this is in keeping with the objectives set out in the introduction of integrating DSTs into existing decision processes. The paper will be of interest to modellers, decision-makers and scientists involved in designing tools to support resource conservation strategy implementation.


Sign in / Sign up

Export Citation Format

Share Document