Theoretical approach to study Disturbances due to mechanical Source in a generalized Thermoelastic diffusive half Space

Author(s):  
G D KEDAR ◽  
J J ◽  
K C DESHMUKH
2013 ◽  
Vol 18 (1) ◽  
pp. 217-234 ◽  
Author(s):  
K. Sharma

The present investigation is concerned with the effect of two temperatures on reflection coefficients in a micropolar thermoelastic solid half space. With two relaxation times, reflection of plane waves impinging obliquely at a plane interface of the micropolar generalized thermoelastic solid half space with two temperatures is investigated. The incident wave is assumed to be striking at the plane surface after propagating through the micropolar generalized thermoelastic solid with two temperatures. Amplitude ratios of the various reflected waves are obtained in closed form and it is found that these are functions of angle of incidence, frequency and are affected by the elastic properties of the media. The effect of two temperatures is shown on these amplitude ratios for a specific model.


2018 ◽  
Vol 23 (1) ◽  
pp. 5-21 ◽  
Author(s):  
P. Ailawalia ◽  
S. Budhiraja ◽  
J. Singh

AbstractThe purpose of this paper is to study the two dimensional deformation in a generalized thermoelastic medium with microtemperatures having an internal heat source subjected to a mechanical force. The force is acting along the interface of generalized thermoelastic half space and generalized thermoelastic half space with microtemperatures having an internal heat source. The normal mode analysis has been applied to obtain the exact expressions for the considered variables. The effect of internal heat source and microtemperatures on the above components has been depicted graphically.


2013 ◽  
Vol 18 (3) ◽  
pp. 815-831 ◽  
Author(s):  
N. Sarkar ◽  
A. Lahiri

Abstract A one-dimensional problem for a homogeneous, isotropic and thermoelastic half-space subjected to a moving plane of heat source on the boundary of the space, which is traction free, is considered in the context of Lord- Shulaman model (L-S model) of thermoelasticity. The Laplace transform and eigenvalue approach techniques are used to solve the resulting non-dimensional coupled equations. Numerical results for the temperature, thermal stress, and displacement distributions are represented graphically and discussed


Sign in / Sign up

Export Citation Format

Share Document