scholarly journals An experimental study of fluid dynamics of stall delay on the blade of a horizontal axis wind turbine

Author(s):  
SHAOQIONG YANG ◽  
YANHUA WU ◽  
ZHANQI TANG
Wind Energy ◽  
2006 ◽  
Vol 9 (4) ◽  
pp. 361-370 ◽  
Author(s):  
Christophe Sicot ◽  
Philippe Devinant ◽  
Thomas Laverne ◽  
Stéphane Loyer ◽  
Jacques Hureau

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4983 ◽  
Author(s):  
Miguel Sumait Sy ◽  
Binoe Eugenio Abuan ◽  
Louis Angelo Macapili Danao

Wind energy is one of the fastest growing renewable energy sources, and the most developed energy extraction device that harnesses this energy is the Horizontal Axis Wind Turbine (HAWT). Increasing the efficiency of HAWTs is one important topic in current research with multiple aspects to look at such as blade design and rotor array optimization. This study looked at the effect of wingtip devices, a split winglet, in particular, to reduce the drag induced by the wind vortices at the blade tip, hence increasing performance. Split winglet implementation was done using computational fluid dynamics (CFD) on the National Renewable Energy Lab (NREL) Phase VI sequence H. In total, there are four (4) blade configurations that are simulated, the base NREL Phase VI sequence H blade, an extended version of the previous blade to equalize length of the blades, the base blade with a winglet and the base blade with split winglet. Results at wind speeds of 7 m/s to 15 m/s show that adding a winglet increased the power generation, on an average, by 1.23%, whereas adding a split winglet increased it by 2.53% in comparison to the extended blade. The study also shows that the increase is achieved by reducing the drag at the blade tip and because of the fact that the winglet and split winglet generating lift themselves. This, however, comes at a cost, i.e., an increase in thrust of 0.83% and 2.05% for the blades with winglet and split winglet, respectively, in comparison to the extended blade.


2011 ◽  
Vol 2011.16 (0) ◽  
pp. 359-362
Author(s):  
Toshiyuki ASO ◽  
Katsuya IIDA ◽  
Tomoyuki AIDA ◽  
Akihiro UNNO ◽  
Yuuki HAYASHI ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3515
Author(s):  
J. Gaitan-Aroca ◽  
Fabio Sierra ◽  
Jose Ulises Castellanos Contreras

In this paper, the performance of a biomimetic wind rotor design inspired by Petrea Volubilis seed is presented. Experimentation for this rotor is configured as a horizontal axis wind turbine (HAWT) and numerical analysis is done in order to obtain performance curves with the open-source computational fluid dynamics (CFD) software OpenFoam®. Numerical analysis and experimental results are compared for power Coefficient (Cp) and thrust coefficient (CT). The biomimetic rotor analysis is also compared with experimental results exposed by Castañeda et al. (2011), who were the first to develop those experimentations with this new rotor design. Computational fluid dynamics simulations were performed using an incompressible large Edyy simulation (LES) turbulence models with a localized sub-grid scale (SGS) dynamic one-equation eddy-viscosity. A dynamic mesh based on an arbitrary mesh interface (AMI) was used to simulate rotation and to evaluate flow around rotor blades in order to accurately capture the flow field behavior and to obtain global variables that allow to determine the power potential of this wind rotor turbine. This study will show the potential of this new rotor design for wind power generation.


2013 ◽  
Vol 291-294 ◽  
pp. 445-449
Author(s):  
De Shun Li ◽  
Ren Nian Li

Field experimental study is performed on a 33 kW horizontal axis wind turbine with rotor diameter of 14.8 m. The distribution of pressure is gathered by disposed 191 taped pressure sensors span-ward on seven particular sections of a blade. The results will provide a comparative basis to wind tunnel experiment and numerical calculation of the flow of the wind turbine.


Sign in / Sign up

Export Citation Format

Share Document