scholarly journals Cultured smooth muscle targets lack survival activity for ciliary ganglion neurons

1988 ◽  
Vol 8 (8) ◽  
pp. 3100-3110 ◽  
Author(s):  
DJ Creedon ◽  
JB Tuttle
1985 ◽  
Vol 33 (8) ◽  
pp. 837-839 ◽  
Author(s):  
A Messing ◽  
A Stieber ◽  
N K Gonatas

The resolution of indirect immunoperoxidase methods for localizing antigens on the surface of plasma membranes of cultured cells was tested using dissociated monolayer cultures of ciliary ganglion neurons prelabeled with cationic ferritin. Clusters of ferritin were produced on the cell surface by warming the cells to 37 degrees C after the ferritin, rabbit anti-ferritin, and goat anti-rabbit immunoglobulin coupled to horseradish peroxidase had all been applied. Intense 3,3'-diaminobenzidine tetrahydrochloride (DAB) staining was limited to the regions immediately surrounding the ferritin clusters. The lateral spread of the DAB reaction product beyond the outer ferritin particles in each cluster averaged 54-81 nm in four experiments. A second type of increased density, coinciding with the thickness of the plasma membrane, was also seen. These stained plasma membranes extended 161-339 nm from the ferritin clusters.


1995 ◽  
Vol 168 (2) ◽  
pp. 662-669 ◽  
Author(s):  
Wendy S. Thomas ◽  
Michele H. Jacob ◽  
Diane K. O'Dowd ◽  
Martin A. Smith

Development ◽  
2001 ◽  
Vol 128 (19) ◽  
pp. 3773-3782 ◽  
Author(s):  
Eri Hashino ◽  
Marlene Shero ◽  
Dirk Junghans ◽  
Hermann Rohrer ◽  
Jeffrey Milbrandt ◽  
...  

During development, parasympathetic ciliary ganglion neurons arise from the neural crest and establish synaptic contacts on smooth and striate muscle in the eye. The factors that promote the ciliary ganglion pioneer axons to grow toward their targets have yet to be determined. Here, we show that glial cell line-derived neurotrophic factor (GDNF) and neurturin (NRTN) constitute target-derived factors for developing ciliary ganglion neurons. Both GDNF and NRTN are secreted from eye muscle located in the target and trajectory pathway of ciliary ganglion pioneer axons during the period of target innervation. After this period, however, the synthesis of GDNF declines markedly, while that of NRTN is maintained throughout the cell death period. Furthermore, both in vitro and in vivo function-blocking of GDNF at early embryonic ages almost entirely suppresses ciliary axon outgrowth. These results demonstrate that target-derived GDNF is necessary for ciliary ganglion neurons to innervate ciliary muscle in the eye. Since the down-regulation of GDNF in the eye is accompanied by down-regulation of GFRα1 and Ret, but not of GFRα2, in innervating ciliary ganglion neurons, the results also suggest that target-derived GDNF regulates the expression of its high-affinity coreceptors.


1987 ◽  
Vol 105 (4) ◽  
pp. 1847-1854 ◽  
Author(s):  
M H Jacob ◽  
D K Berg

The regulation of nicotinic acetylcholine receptors (AChRs) in chick ciliary ganglia was examined by using a radiolabeled anti-AChR mAb to quantitate the amount of receptor in ganglion detergent extracts after preganglionic denervation or postganglionic axotomy. Surgical transection of the preganglionic input to the ciliary ganglion in newly hatched chicks caused a threefold reduction in the total number of AChRs within 10 d compared with that present in unoperated contralateral control ganglia. Surgical transection of both the choroid and ciliary nerves emerging from the ciliary ganglion in newly hatched chicks to establish postganglionic axotomy led to a nearly 10-fold reduction in AChRs within 5 d compared with unoperated contralateral ganglia. The declines were specific since they could not be accounted for by changes in ganglionic protein or by decreases in neuronal survival or size. Light microscopy revealed no gross morphological differences between neurons in operated and control ganglia. A second membrane component of cholinergic relevance on chick ciliary ganglion neurons is the alpha-bungarotoxin (alpha-Bgt)-binding component. The alpha-Bgt-binding component also declined in number after either postganglionic axotomy or preganglionic denervation, but appeared to do so with a more rapid time course than did ganglionic AChRs. The results imply that cell-cell interactions in vivo specifically regulate both the number of AChRs and the number of alpha-Bgt-binding components in the ganglion. Regulation of these neuronal cholinergic membrane components clearly differs from that previously described for muscle AChRs.


2002 ◽  
Vol 64 (3) ◽  
pp. 1169-1174 ◽  
Author(s):  
Masaru Sorimachi ◽  
Yumiko Abe ◽  
Katsutoshi Furukawa ◽  
Norio Akaike

1991 ◽  
Vol 6 (5) ◽  
pp. 451-472 ◽  
Author(s):  
Anton Reiner ◽  
Jonathan T. Erichsen ◽  
John B. Cabot ◽  
Craig Evinger ◽  
Malinda E. C. Fitzerald ◽  
...  

AbstractTwo morphologically distinct types of preganglionic endings are observed in the avian ciliary ganglion: boutonal and cap-like. Boutonal endings synapse on ciliary ganglion neurons (called choroidal neurons) innervating choroidal blood vessels, while cap-like endings synapse on ciliary ganglion neurons (called ciliary neurons) controlling the lens and pupil. Some of both types of preganglionic endings contain the neuropeptides substance P (SP) and/or leucine-enkephalin (LENK). Although both types of preganglionic terminals are also known to be cholinergic, there has been no direct evidence that SP and LENK are found in cholinergic endings in the ciliary ganglion. The present studies in pigeons, which involved the use of single- and double-label immunohistochemical techniques, were undertaken to examine this issue, as well as to (1) determine the relative percentages of the boutonal and cap-like endings that contain SP, LENK, or both SP and LENK; and (2) determine if the two different types of terminals in the ciliary ganglion arise from different subdivisions of the nucleus of Edinger-Westphal (EW).Single- and double-label immunohistochemical studies revealed that all neurons of EW, regardless of whether they contained immunohistochemically detectible amounts of SP or LENK, are cholinergic. In the medial subdivision of EW (EWM), which was found to contain approximately 700 neurons, 20.2% of these neurons were observed to contain both SP and LENK, while 11.6% were observed to contain SP only and 10.7% were observed to contain LENK only. In contrast, in lateral EW (EWL), which was found to contain approximately 500 neurons, 16.2% of the neurons were observed to contain both SP and LENK, while 19.2% of the neurons were observed to contain SP only and 12.6% were observed to contain LENK only. Retrograde-labeling studies involving horseradish peroxidase injections into the ciliary ganglion revealed that EW was the sole source of input to the ciliary ganglion and all, or nearly all, neurons in EW innervate the ciliary ganglion.Immunohistochemical labeling of the ciliary ganglion neurons with an antiserum against choline acetyltransferase revealed that approximately 900 choroidal neurons and approximately 600 ciliary neurons are present in the ganglion, all of which receive cholinergic preganglionic endings. Of the choroidal neurons, 94% receive butonal terminals containing both SP and LENK, while only 2% receive SP+ only boutonal endings and 2% receive LENK+ only butonal endings. Of the ciliary neurons, 25% receive cap-like endings containing both SP and LENK, 30% receive cap-like endings containing only SP and 3% receive cap-like endings containing only LENK. Total unilateral lesions of EW resulted in the loss of all SP+ or LENK+ terminals in the ipsilateral ganglion. Subtotal EW lesions that spared either part of EWM or part of EWL revealed that boutonal endings arise from EWM neurons and cap-like endings from EWL neurons.The present results suggest that the choroidal neurons, which regulate choroidal blood flow, may be relatively uniform in their functional properties since they nearly all receive boutonal endings from EWM that co-contain SP, LENK, and acetylcholine. In contrast, the ciliary neurons, which receive their preganglionic input from EWL, may consist of at least three major functionally distinct subgroups: (1) those receiving SP/LENK/acetylcholine-containing cap-like endings; (2) those receiving SP/acetylcholine-containing cap-like endings; and (3) those receiving acetylcholine-containing cap-like endings. The functional diversity of ciliary neurons may in part be related to the fact that some ciliary neurons innervate the iris and others the ciliary body.


1984 ◽  
Vol 302 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Stephen D. Skaper ◽  
Ivan Selak ◽  
Marston Manthorpe ◽  
Silvio Varon

Sign in / Sign up

Export Citation Format

Share Document