scholarly journals Jxc1/Sobp, Encoding a Nuclear Zinc Finger Protein, Is Critical for Cochlear Growth, Cell Fate, and Patterning of the Organ of Corti

2008 ◽  
Vol 28 (26) ◽  
pp. 6633-6641 ◽  
Author(s):  
Z. Chen ◽  
M. Montcouquiol ◽  
R. Calderon ◽  
N. A. Jenkins ◽  
N. G. Copeland ◽  
...  
Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 943-952 ◽  
Author(s):  
X. Cui ◽  
C.Q. Doe

Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast ‘sublineages’), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.


Development ◽  
2000 ◽  
Vol 127 (14) ◽  
pp. 3119-3129 ◽  
Author(s):  
P. Chen ◽  
R.E. Ellis

In C. elegans, the zinc-finger protein TRA-1A is thought to be the final arbiter of somatic sexual identity. We show that fog-3, which is required for germ cells to become sperm rather than oocytes, is a target of TRA-1A. First, northern analyses and RT-PCR experiments indicate that expression of fog-3 is controlled by tra-1. Second, studies of double mutants show that this control could be direct. Third, the fog-3 promoter contains multiple sites that bind TRA-1A in gel shift assays, and mutations in these sites alter activity of fog-3 in vivo. These results establish fog-3 as one of the first known targets of transcriptional regulation by TRA-1A. Furthermore, they show that tra-1 controls a terminal regulator of sexual fate in germ cells, just as it is thought to do in the soma.


Development ◽  
1997 ◽  
Vol 124 (13) ◽  
pp. 2515-2525 ◽  
Author(s):  
R. Dittrich ◽  
T. Bossing ◽  
A.P. Gould ◽  
G.M. Technau ◽  
J. Urban

The Drosophila ventral nerve cord (vNC) derives from a stereotyped population of neural stem cells, neuroblasts (NBs), each of which gives rise to a characteristic cell lineage. The mechanisms leading to the specification and differentiation of these lineages are largely unknown. Here we analyse mechanisms leading to cell differentiation within the NB 7–3 lineage. Analogous to the grasshopper, NB 7–3 is the progenitor of the Drosophila vNC serotonergic neurons. The zinc finger protein Eagle (Eg) is expressed in NB 7–3 just after delamination and is present in all NB 7–3 progeny until late stage 17. DiI cell lineage tracing and immunocytochemistry reveal that eg is required for normal pathfinding of interneuronal projections and for restricting the cell number in the thoracic NB 7–3 lineage. Moreover, eg is required for serotonin expression. Ectopic expression of Eg protein forces specific additional CNS cells to enter the serotonergic differentiation pathway. Like NB 7–3, the progenitor(s) of these ectopic cells express Huckebein (Hkb), another zinc finger protein. However, their progenitors do not express engrailed (en) as opposed to the NB 7–3 lineage, where en acts upstream of eg. We conclude that eg and hkb act in concert to determine serotonergic cell fate, while en is more distantly involved in this process by activating eg expression. Thus, we provide the first functional evidence for a combinatorial code of transcription factors acting early but downstream of segment polarity genes to specify a unique neuronal cell fate.


Sign in / Sign up

Export Citation Format

Share Document