The differentiation of the serotonergic neurons in the Drosophila ventral nerve cord depends on the combined function of the zinc finger proteins Eagle and Huckebein

Development ◽  
1997 ◽  
Vol 124 (13) ◽  
pp. 2515-2525 ◽  
Author(s):  
R. Dittrich ◽  
T. Bossing ◽  
A.P. Gould ◽  
G.M. Technau ◽  
J. Urban

The Drosophila ventral nerve cord (vNC) derives from a stereotyped population of neural stem cells, neuroblasts (NBs), each of which gives rise to a characteristic cell lineage. The mechanisms leading to the specification and differentiation of these lineages are largely unknown. Here we analyse mechanisms leading to cell differentiation within the NB 7–3 lineage. Analogous to the grasshopper, NB 7–3 is the progenitor of the Drosophila vNC serotonergic neurons. The zinc finger protein Eagle (Eg) is expressed in NB 7–3 just after delamination and is present in all NB 7–3 progeny until late stage 17. DiI cell lineage tracing and immunocytochemistry reveal that eg is required for normal pathfinding of interneuronal projections and for restricting the cell number in the thoracic NB 7–3 lineage. Moreover, eg is required for serotonin expression. Ectopic expression of Eg protein forces specific additional CNS cells to enter the serotonergic differentiation pathway. Like NB 7–3, the progenitor(s) of these ectopic cells express Huckebein (Hkb), another zinc finger protein. However, their progenitors do not express engrailed (en) as opposed to the NB 7–3 lineage, where en acts upstream of eg. We conclude that eg and hkb act in concert to determine serotonergic cell fate, while en is more distantly involved in this process by activating eg expression. Thus, we provide the first functional evidence for a combinatorial code of transcription factors acting early but downstream of segment polarity genes to specify a unique neuronal cell fate.

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 943-952 ◽  
Author(s):  
X. Cui ◽  
C.Q. Doe

Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast ‘sublineages’), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.


Development ◽  
2000 ◽  
Vol 127 (14) ◽  
pp. 3119-3129 ◽  
Author(s):  
P. Chen ◽  
R.E. Ellis

In C. elegans, the zinc-finger protein TRA-1A is thought to be the final arbiter of somatic sexual identity. We show that fog-3, which is required for germ cells to become sperm rather than oocytes, is a target of TRA-1A. First, northern analyses and RT-PCR experiments indicate that expression of fog-3 is controlled by tra-1. Second, studies of double mutants show that this control could be direct. Third, the fog-3 promoter contains multiple sites that bind TRA-1A in gel shift assays, and mutations in these sites alter activity of fog-3 in vivo. These results establish fog-3 as one of the first known targets of transcriptional regulation by TRA-1A. Furthermore, they show that tra-1 controls a terminal regulator of sexual fate in germ cells, just as it is thought to do in the soma.


2008 ◽  
Vol 28 (26) ◽  
pp. 6633-6641 ◽  
Author(s):  
Z. Chen ◽  
M. Montcouquiol ◽  
R. Calderon ◽  
N. A. Jenkins ◽  
N. G. Copeland ◽  
...  

2002 ◽  
Vol 63 (5) ◽  
pp. 1880-1890 ◽  
Author(s):  
Jun Aruga ◽  
Naoki Yokota ◽  
Mitsuhiro Hashimoto ◽  
Teiichi Furuichi ◽  
Mitsunori Fukuda ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Chunfang Tao ◽  
Juan Luo ◽  
Jun Tang ◽  
Danfeng Zhou ◽  
Shujun Feng ◽  
...  

Abstract Background Zinc-finger protein 471 (ZNF471) is a member of the Krüppel-associated box domain zinc finger protein (KRAB-ZFP) family. ZNF471 is methylated in squamous cell carcinomas of tongue, stomach and esophageal. However, its role in breast carcinogenesis remains elusive. Here, we studied its expression, functions, and molecular mechanisms in breast cancer. Methods We examined ZNF471 expression by RT-PCR and qPCR. Methylation-specific PCR determined its promoter methylation. Its biological functions and related molecular mechanisms were assessed by CCK-8, clonogenicity, wound healing, Transwell, nude mice tumorigenicity, flow cytometry, BrdU-ELISA, immunohistochemistry and Western blot assays. Results ZNF471 was significantly downregulated in breast cell lines and tissues due to its promoter CpG methylation, compared with normal mammary epithelial cells and paired surgical-margin tissues. Ectopic expression of ZNF471 substantially inhibited breast tumor cell growth in vitro and in vivo, arrested cell cycle at S phase, and promoted cell apoptosis, as well as suppressed metastasis. Further knockdown of ZNF471 verified its tumor-suppressive effects. We also found that ZNF471 exerted its tumor-suppressive functions through suppressing epithelial-mesenchymal transition, tumor cell stemness and AKT and Wnt/β-catenin signaling. Conclusions ZNF471 functions as a tumor suppressor that was epigenetically inactivated in breast cancer. Its inhibition of AKT and Wnt/β-catenin signaling pathways is one of the mechanisms underlying its anti-cancer effects.


Development ◽  
2002 ◽  
Vol 129 (15) ◽  
pp. 3645-3656 ◽  
Author(s):  
Ryan B. Green ◽  
Victor Hatini ◽  
Katherine A. Johansen ◽  
Xue-Jun Liu ◽  
Judith A. Lengyel

Elongation of the Drosophila embryonic hindgut epithelium occurs by a process of oriented cell rearrangement requiring the genes drumstick (drm) and lines (lin). The elongating hindgut becomes subdivided into domains – small intestine, large intestine and rectum – each characterized by a specific pattern of gene expression dependent upon normal drm and lin function. We show that drm encodes an 81 amino acid (10 kDa) zinc finger protein that is a member of the Odd-skipped family. drm expression is localized to the developing midgut-hindgut junction and is required to establish the small intestine, while lin is broadly expressed throughout the gut primordium and represses small intestine fate. lin is epistatic to drm, suggesting a model in which localized expression of drm blocks lin activity, thereby allowing small intestine fate to be established. Further supporting this model, ectopic expression of Drm throughout the hindgut produces a lin phenotype. Biochemical and genetic data indicate that the first conserved zinc finger of Drm is essential for its function. We have thus defined a pathway in which a spatially localized zinc finger protein antagonizes a globally expressed protein, thereby leading to specification of a domain (the small intestine) necessary for oriented cell rearrangement.


Development ◽  
1997 ◽  
Vol 124 (6) ◽  
pp. 1227-1237 ◽  
Author(s):  
J.L. Mullor ◽  
M. Calleja ◽  
J. Capdevila ◽  
I. Guerrero

In the Drosophila wing imaginal disc, the Hedgehog (Hh) signal molecule induces the expression of decapentaplegic (dpp) in a band of cells abutting the anteroposterior (A/P) compartment border. It has been proposed that Dpp organizes the patterning of the entire wing disc. We have tested this proposal by studying the response to distinct levels of ectopic expression of Hh and Dpp, using the sensory organ precursors (SOPs) of the wing and notum and the presumptive wing veins as positional markers. Here, we show that Dpp specifies the position of most SOPs in the notum and of some of them in the wing. Close to the A/P compartment border, however, SOPs are specified by Hh rather than by Dpp alone. We also show that late signaling by Hh, after setting up dpp expression, is responsible for the formation of vein 3 and the scutellar region, and also for the determination of the distance between veins 3 and 4. One of the genes that mediates the Hh signal is the zinc-finger protein Cubitus interruptus (Ci). These results indicate that Hh has a Dpp-independent morphogenetic effect in the region of the wing disc near the A/P border.


Sign in / Sign up

Export Citation Format

Share Document