scholarly journals Body and Object Effectors: The Organization of Object Representations in High-Level Visual Cortex Reflects Body-Object Interactions

2013 ◽  
Vol 33 (46) ◽  
pp. 18247-18258 ◽  
Author(s):  
S. Bracci ◽  
M. V. Peelen
2018 ◽  
Vol 29 (10) ◽  
pp. 4452-4461 ◽  
Author(s):  
Sue-Hyun Lee ◽  
Dwight J Kravitz ◽  
Chris I Baker

Abstract Memory retrieval is thought to depend on interactions between hippocampus and cortex, but the nature of representation in these regions and their relationship remains unclear. Here, we performed an ultra-high field fMRI (7T) experiment, comprising perception, learning and retrieval sessions. We observed a fundamental difference between representations in hippocampus and high-level visual cortex during perception and retrieval. First, while object-selective posterior fusiform cortex showed consistent responses that allowed us to decode object identity across both perception and retrieval one day after learning, object decoding in hippocampus was much stronger during retrieval than perception. Second, in visual cortex but not hippocampus, there was consistency in response patterns between perception and retrieval, suggesting that substantial neural populations are shared for both perception and retrieval. Finally, the decoding in hippocampus during retrieval was not observed when retrieval was tested on the same day as learning suggesting that the retrieval process itself is not sufficient to elicit decodable object representations. Collectively, these findings suggest that while cortical representations are stable between perception and retrieval, hippocampal representations are much stronger during retrieval, implying some form of reorganization of the representations between perception and retrieval.


2015 ◽  
Vol 35 (36) ◽  
pp. 12412-12424 ◽  
Author(s):  
A. Stigliani ◽  
K. S. Weiner ◽  
K. Grill-Spector

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Ben Deen ◽  
Hilary Richardson ◽  
Daniel D. Dilks ◽  
Atsushi Takahashi ◽  
Boris Keil ◽  
...  

2017 ◽  
Vol 117 (1) ◽  
pp. 388-402 ◽  
Author(s):  
Michael A. Cohen ◽  
George A. Alvarez ◽  
Ken Nakayama ◽  
Talia Konkle

Visual search is a ubiquitous visual behavior, and efficient search is essential for survival. Different cognitive models have explained the speed and accuracy of search based either on the dynamics of attention or on similarity of item representations. Here, we examined the extent to which performance on a visual search task can be predicted from the stable representational architecture of the visual system, independent of attentional dynamics. Participants performed a visual search task with 28 conditions reflecting different pairs of categories (e.g., searching for a face among cars, body among hammers, etc.). The time it took participants to find the target item varied as a function of category combination. In a separate group of participants, we measured the neural responses to these object categories when items were presented in isolation. Using representational similarity analysis, we then examined whether the similarity of neural responses across different subdivisions of the visual system had the requisite structure needed to predict visual search performance. Overall, we found strong brain/behavior correlations across most of the higher-level visual system, including both the ventral and dorsal pathways when considering both macroscale sectors as well as smaller mesoscale regions. These results suggest that visual search for real-world object categories is well predicted by the stable, task-independent architecture of the visual system. NEW & NOTEWORTHY Here, we ask which neural regions have neural response patterns that correlate with behavioral performance in a visual processing task. We found that the representational structure across all of high-level visual cortex has the requisite structure to predict behavior. Furthermore, when directly comparing different neural regions, we found that they all had highly similar category-level representational structures. These results point to a ubiquitous and uniform representational structure in high-level visual cortex underlying visual object processing.


2018 ◽  
Vol 18 (12) ◽  
pp. 6
Author(s):  
Hassan Akhavein ◽  
Armita Dehmoobadsharifabadi ◽  
Reza Farivar

2019 ◽  
Vol 19 (10) ◽  
pp. 34a
Author(s):  
Emily Kubota ◽  
Jason D Yeatman

2018 ◽  
Vol 18 (10) ◽  
pp. 1149
Author(s):  
Jesse Gomez ◽  
Michael Barnett ◽  
Kalanit Grill-Spector
Keyword(s):  

2021 ◽  
Author(s):  
Marek A. Pedziwiatr ◽  
Elisabeth von dem Hagen ◽  
Christoph Teufel

Humans constantly move their eyes to explore the environment and obtain information. Competing theories of gaze guidance consider the factors driving eye movements within a dichotomy between low-level visual features and high-level object representations. However, recent developments in object perception indicate a complex and intricate relationship between features and objects. Specifically, image-independent object-knowledge can generate objecthood by dynamically reconfiguring how feature space is carved up by the visual system. Here, we adopt this emerging perspective of object perception, moving away from the simplifying dichotomy between features and objects in explanations of gaze guidance. We recorded eye movements in response to stimuli that appear as meaningless patches on initial viewing but are experienced as coherent objects once relevant object-knowledge has been acquired. We demonstrate that gaze guidance differs substantially depending on whether observers experienced the same stimuli as meaningless patches or organised them into object representations. In particular, fixations on identical images became object-centred, less dispersed, and more consistent across observers once exposed to relevant prior object-knowledge. Observers' gaze behaviour also indicated a shift from exploratory information-sampling to a strategy of extracting information mainly from selected, object-related image areas. These effects were evident from the first fixations on the image. Importantly, however, eye-movements were not fully determined by object representations but were best explained by a simple model that integrates image-computable features and high-level, knowledge-dependent object representations. Overall, the results show how information sampling via eye-movements in humans is guided by a dynamic interaction between image-computable features and knowledge-driven perceptual organisation.


2017 ◽  
Author(s):  
Daniel Kaiser ◽  
Marius V. Peelen

AbstractTo optimize processing, the human visual system utilizes regularities present in naturalistic visual input. One of these regularities is the relative position of objects in a scene (e.g., a sofa in front of a television), with behavioral research showing that regularly positioned objects are easier to perceive and to remember. Here we use fMRI to test how positional regularities are encoded in the visual system. Participants viewed pairs of objects that formed minimalistic two-object scenes (e.g., a “living room” consisting of a sofa and television) presented in their regularly experienced spatial arrangement or in an irregular arrangement (with interchanged positions). Additionally, single objects were presented centrally and in isolation. Multi-voxel activity patterns evoked by the object pairs were modeled as the average of the response patterns evoked by the two single objects forming the pair. In two experiments, this approximation in object-selective cortex was significantly less accurate for the regularly than the irregularly positioned pairs, indicating integration of individual object representations. More detailed analysis revealed a transition from independent to integrative coding along the posterior-anterior axis of the visual cortex, with the independent component (but not the integrative component) being almost perfectly predicted by object selectivity across the visual hierarchy. These results reveal a transitional stage between individual object and multi-object coding in visual cortex, providing a possible neural correlate of efficient processing of regularly positioned objects in natural scenes.


Sign in / Sign up

Export Citation Format

Share Document