scholarly journals Knowledge-driven perceptual organization reshapes information sampling via eye movements

2021 ◽  
Author(s):  
Marek A. Pedziwiatr ◽  
Elisabeth von dem Hagen ◽  
Christoph Teufel

Humans constantly move their eyes to explore the environment and obtain information. Competing theories of gaze guidance consider the factors driving eye movements within a dichotomy between low-level visual features and high-level object representations. However, recent developments in object perception indicate a complex and intricate relationship between features and objects. Specifically, image-independent object-knowledge can generate objecthood by dynamically reconfiguring how feature space is carved up by the visual system. Here, we adopt this emerging perspective of object perception, moving away from the simplifying dichotomy between features and objects in explanations of gaze guidance. We recorded eye movements in response to stimuli that appear as meaningless patches on initial viewing but are experienced as coherent objects once relevant object-knowledge has been acquired. We demonstrate that gaze guidance differs substantially depending on whether observers experienced the same stimuli as meaningless patches or organised them into object representations. In particular, fixations on identical images became object-centred, less dispersed, and more consistent across observers once exposed to relevant prior object-knowledge. Observers' gaze behaviour also indicated a shift from exploratory information-sampling to a strategy of extracting information mainly from selected, object-related image areas. These effects were evident from the first fixations on the image. Importantly, however, eye-movements were not fully determined by object representations but were best explained by a simple model that integrates image-computable features and high-level, knowledge-dependent object representations. Overall, the results show how information sampling via eye-movements in humans is guided by a dynamic interaction between image-computable features and knowledge-driven perceptual organisation.

2011 ◽  
Vol 106 (3) ◽  
pp. 1389-1398 ◽  
Author(s):  
Jason Fischer ◽  
David Whitney

Natural visual scenes are cluttered. In such scenes, many objects in the periphery can be crowded, blocked from identification, simply because of the dense array of clutter. Outside of the fovea, crowding constitutes the fundamental limitation on object recognition and is thought to arise from the limited resolution of the neural mechanisms that select and bind visual features into coherent objects. Thus it is widely believed that in the visual processing stream, a crowded object is reduced to a collection of dismantled features with no surviving holistic properties. Here, we show that this is not so: an entire face can survive crowding and contribute its holistic attributes to the perceived average of the set, despite being blocked from recognition. Our results show that crowding does not dismantle high-level object representations to their component features.


2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


2020 ◽  
Author(s):  
David Harris ◽  
Mark Wilson ◽  
Tim Holmes ◽  
Toby de Burgh ◽  
Samuel James Vine

Head-mounted eye tracking has been fundamental for developing an understanding of sporting expertise, as the way in which performers sample visual information from the environment is a major determinant of successful performance. There is, however, a long running tension between the desire to study realistic, in-situ gaze behaviour and the difficulties of acquiring accurate ocular measurements in dynamic and fast-moving sporting tasks. Here, we describe how immersive technologies, such as virtual reality, offer an increasingly compelling approach for conducting eye movement research in sport. The possibility of studying gaze behaviour in representative and realistic environments, but with high levels of experimental control, could enable significant strides forward for eye tracking in sport and improve understanding of how eye movements underpin sporting skills. By providing a rationale for virtual reality as an optimal environment for eye tracking research, as well as outlining practical considerations related to hardware, software and data analysis, we hope to guide researchers and practitioners in the use of this approach.


2020 ◽  
Vol 16 (3) ◽  
pp. 182-195
Author(s):  
Sarah Baker ◽  
Natalie Logie ◽  
Kim Paulson ◽  
Adele Duimering ◽  
Albert Murtha

Radiotherapy is an important component of the treatment for primary and metastatic brain tumors. Due to the close proximity of critical structures and normal brain parenchyma, Central Nervous System (CNS) radiotherapy is associated with adverse effects such as neurocognitive deficits, which must be weighed against the benefit of improved tumor control. Advanced radiotherapy technology may help to mitigate toxicity risks, although there is a paucity of high-level evidence to support its use. Recent advances have been made in the treatment for gliomas, meningiomas, benign tumors, and metastases, although outcomes remain poor for many high grade tumors. This review highlights recent developments in CNS radiotherapy, discusses common treatment toxicities, critically reviews advanced radiotherapy technologies, and highlights promising treatment strategies to improve clinical outcomes in the future.


Author(s):  
Johan Mahyudi ◽  
Djoko Saryono ◽  
Wahyudi Siswanto ◽  
Yuni Pratiwi

In short time, Indonesian digital poetry attracts its audience through a series of visualization features of the digital art. This research uses a short segment analysis on Indonesian videography digital poetry to demonstrate the existence of visual conglomeration practices through the creation of objects, features, a feature of space, measuring distance in feature space, and dimension reduction. These five approaches are proposed by Manovich (2014) in ​​grouping millions of visual artworks based on simple criteria. Of the three common objects are found, Indonesian animators, prefer individuals and texts as the main impression. The movement features are found in cinematic poetry and its rely depend on kinetic texts. Meanwhile, non-movement features can be found in the form of human imitation or part of them, portraits, silhouettes, and comics. Indonesian digital poetry of space features in form of textual space is prioritizing on the kinetics text, the space of time is prioritizing the presentation of objects association of words are spoken, the neutral space is prioritizing the use of computer technology application. The grouping of visual art composition is based on two criteria: the technique of creating and artistic impressions. The dimensional reducing is prominently practiced by Afrizal Malna.


Author(s):  
Zewen Xu ◽  
Zheng Rong ◽  
Yihong Wu

AbstractIn recent years, simultaneous localization and mapping in dynamic environments (dynamic SLAM) has attracted significant attention from both academia and industry. Some pioneering work on this technique has expanded the potential of robotic applications. Compared to standard SLAM under the static world assumption, dynamic SLAM divides features into static and dynamic categories and leverages each type of feature properly. Therefore, dynamic SLAM can provide more robust localization for intelligent robots that operate in complex dynamic environments. Additionally, to meet the demands of some high-level tasks, dynamic SLAM can be integrated with multiple object tracking. This article presents a survey on dynamic SLAM from the perspective of feature choices. A discussion of the advantages and disadvantages of different visual features is provided in this article.


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 371
Author(s):  
Yu Jin ◽  
Jiawei Guo ◽  
Huichun Ye ◽  
Jinling Zhao ◽  
Wenjiang Huang ◽  
...  

The remote sensing extraction of large areas of arecanut (Areca catechu L.) planting plays an important role in investigating the distribution of arecanut planting area and the subsequent adjustment and optimization of regional planting structures. Satellite imagery has previously been used to investigate and monitor the agricultural and forestry vegetation in Hainan. However, the monitoring accuracy is affected by the cloudy and rainy climate of this region, as well as the high level of land fragmentation. In this paper, we used PlanetScope imagery at a 3 m spatial resolution over the Hainan arecanut planting area to investigate the high-precision extraction of the arecanut planting distribution based on feature space optimization. First, spectral and textural feature variables were selected to form the initial feature space, followed by the implementation of the random forest algorithm to optimize the feature space. Arecanut planting area extraction models based on the support vector machine (SVM), BP neural network (BPNN), and random forest (RF) classification algorithms were then constructed. The overall classification accuracies of the SVM, BPNN, and RF models optimized by the RF features were determined as 74.82%, 83.67%, and 88.30%, with Kappa coefficients of 0.680, 0.795, and 0.853, respectively. The RF model with optimized features exhibited the highest overall classification accuracy and kappa coefficient. The overall accuracy of the SVM, BPNN, and RF models following feature optimization was improved by 3.90%, 7.77%, and 7.45%, respectively, compared with the corresponding unoptimized classification model. The kappa coefficient also improved. The results demonstrate the ability of PlanetScope satellite imagery to extract the planting distribution of arecanut. Furthermore, the RF is proven to effectively optimize the initial feature space, composed of spectral and textural feature variables, further improving the extraction accuracy of the arecanut planting distribution. This work can act as a theoretical and technical reference for the agricultural and forestry industries.


Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


2021 ◽  
Vol 4 (1) ◽  
pp. 71-95
Author(s):  
Juha Lång ◽  
Hana Vrzakova ◽  
Lauri Mehtätalo

  One of the main rules of subtitling states that subtitles should be formatted and timed so that viewers have enough time to read and understand the text but also to follow the picture. In this paper we examine the factors that influence the time viewers spend looking at subtitles. We concentrate on the lexical and structural properties of subtitles. The participant group (N = 14) watched a television documentary with Russian narration and Finnish subtitles (the participants’ native language), while their eye movements were tracked. Using a linear mixed-effects model, we identified significant effects of subtitle duration and character count on the time participants spent looking at the subtitles. The model also revealed significant inter-individual differences, despite the fact that the participant group was seemingly homogeneous. The findings underline the complexity of subtitled audiovisual material as a stimulus of cognitive processing. We provide a starting point for more comprehensive modelling of the factors involved in gaze behaviour when watching subtitled content. Lay summary Subtitles have become a popular method for watching foreign series and films even in countries that have traditionally used dubbing in this regard. Because subtitles are visible to the viewer a short, limited time, they should be composed so that they are easy to read, and that the viewer has time to also follow the image. Nevertheless, the factors that have impact the time it takes to read a subtitle is not very well known. We wanted to find out what makes people who are watching subtitled television shows spend more time gazing at the subtitles? To answer this question, we recorded the eye movements of 14 participants when they were watching a short, subtitled television documentary. We created a statistical model of the gaze behavior from the eye movement data and found that both the length of the subtitle and the time the subtitle is visible are separate contributing factors. We also discovered large differences between individual viewers. Our conclusion is that people process subtitled content in very different ways, but there are some common tendencies. Our model can be seen as solid starting point for comprehensive modelling of gaze behavior of people watching subtitled audiovisual material.


Sign in / Sign up

Export Citation Format

Share Document