scholarly journals Inositol 1,4,5-trisphosphate and ryanodine receptor distributions and patterns of acetylcholine- and caffeine-induced calcium release in cultured mouse hippocampal neurons

1995 ◽  
Vol 15 (4) ◽  
pp. 2592-2608 ◽  
Author(s):  
KJ Seymour-Laurent ◽  
ME Barish
1989 ◽  
Vol 262 (1) ◽  
pp. 83-89 ◽  
Author(s):  
K J Föhr ◽  
J Scott ◽  
G Ahnert-Hilger ◽  
M Gratzl

The inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ compartment of endocrine cells was studied with alpha-toxin- and digitonin-permeabilized rat insulinoma (RINA2) and rat pheochromocytoma (PC12) cells. The Ca2+ uptake was ATP-dependent, and submicromolar concentrations of IP3 specifically released the stored Ca2+. Half-maximal Ca2+ release was observed with 0.25-0.5 mumol of IP3/l, and the amount of Ca2+ released due to IP3 could be enhanced by additional loading of the Ca2+ compartment. Consecutive additions of the same concentration of IP3 for 1-2 h always released the same amount of Ca2+ without desensitization, providing an ideal basis to further characterize the IP3-induced Ca2+ release. Here we describe for the first time a reversible inhibitory effect of decavanadate on the IP3-induced Ca2+ release. Among the vanadium species tested (decavanadate, oligovanadate and monovanadate), only decavanadate was inhibitory, with a half-maximal effect at 5 mumol/l in both cell types. The effect of decavanadate could be overcome by increasing the amount of sequestered Ca2+ or added IP3. Decavanadate did not affect the ATP-driven Ca2+ uptake but oligovanadate was inhibitory on Ca2+ uptake. p-Hydroxymercuribenzoate (pHMB) at concentrations between 10 and 30 mumol/l also inhibited the Ca2+ release due to IP3. Thiol compounds such as dithiothreitol (DTT; 1 mmol/l) added before pHMB removed all its inhibitory effect on the IP3-induced Ca2+ release, whereas the inhibition caused by decavanadate was unaffected by DTT. Thus, the decavanadate-dependent inhibition functions by a distinctly different mechanism than pHMB and could serve as a specific tool to analyse various aspects of the IP3-induced Ca2+ release within endocrine cells.


2007 ◽  
Vol 130 (4) ◽  
pp. 365-378 ◽  
Author(s):  
Sanjeewa A. Goonasekera ◽  
Nicole A. Beard ◽  
Linda Groom ◽  
Takashi Kimura ◽  
Alla D. Lyfenko ◽  
...  

Ca2+ release from intracellular stores is controlled by complex interactions between multiple proteins. Triadin is a transmembrane glycoprotein of the junctional sarcoplasmic reticulum of striated muscle that interacts with both calsequestrin and the type 1 ryanodine receptor (RyR1) to communicate changes in luminal Ca2+ to the release machinery. However, the potential impact of the triadin association with RyR1 in skeletal muscle excitation–contraction coupling remains elusive. Here we show that triadin binding to RyR1 is critically important for rapid Ca2+ release during excitation–contraction coupling. To assess the functional impact of the triadin-RyR1 interaction, we expressed RyR1 mutants in which one or more of three negatively charged residues (D4878, D4907, and E4908) in the terminal RyR1 intraluminal loop were mutated to alanines in RyR1-null (dyspedic) myotubes. Coimmunoprecipitation revealed that triadin, but not junctin, binding to RyR1 was abolished in the triple (D4878A/D4907A/E4908A) mutant and one of the double (D4907A/E4908A) mutants, partially reduced in the D4878A/D4907A double mutant, but not affected by either individual (D4878A, D4907A, E4908A) mutations or the D4878A/E4908A double mutation. Functional studies revealed that the rate of voltage- and ligand-gated SR Ca2+ release were reduced in proportion to the degree of interruption in triadin binding. Ryanodine binding, single channel recording, and calcium release experiments conducted on WT and triple mutant channels in the absence of triadin demonstrated that the luminal loop mutations do not directly alter RyR1 function. These findings demonstrate that junctin and triadin bind to different sites on RyR1 and that triadin plays an important role in ensuring rapid Ca2+ release during excitation–contraction coupling in skeletal muscle.


2002 ◽  
Vol 278 (1) ◽  
pp. 444-453 ◽  
Author(s):  
Steven Reiken ◽  
Marta Gaburjakova ◽  
Silvia Guatimosim ◽  
Ana M. Gomez ◽  
Jeanine D'Armiento ◽  
...  

1999 ◽  
Vol 276 (5) ◽  
pp. C1115-C1120 ◽  
Author(s):  
Karl Dreja ◽  
Per Hellstrand

To investigate the Ca2+-dependent plasticity of sarcoplasmic reticulum (SR) function in vascular smooth muscle, transient responses to agents releasing intracellular Ca2+ by either ryanodine (caffeine) ord- myo-inositol 1,4,5-trisphosphate [IP3; produced in response to norepinephrine (NE), 5-hydroxytryptamine (5-HT), arginine vasopressin (AVP)] receptors in rat tail arterial rings were evaluated after 4 days of organ culture. Force transients induced by all agents were increased compared with those induced in fresh rings. Stimulation by 10% FCS during culture further potentiated the force and Ca2+ responses to caffeine (20 mM) but not to NE (10 μM), 5-HT (10 μM), or AVP (0.1 μM). The effect was persistent, and SR capacity was not altered after reversible depletion of stores with cyclopiazonic acid. The effects of serum could be mimicked by culture in depolarizing medium (30 mM K+) and blocked by the addition of verapamil (1 μM) or EGTA (1 mM) to the medium, lowering intracellular Ca2+ concentration ([Ca2+]i) during culture. These results show that modulation of SR function can occur in vitro by a mechanism dependent on long-term levels of basal [Ca2+]iand involving ryanodine- but not IP3 receptor-mediated Ca2+release.


1994 ◽  
Vol 19 ◽  
pp. S26
Author(s):  
Junji Hirota ◽  
Takayuki Michikawa ◽  
Atsushi Miyawaki ◽  
Ichiro Okura ◽  
Teiichi Furuichi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document