KCTD8 and KCTD12 Facilitate Axonal Expression of GABAB Receptors in Habenula Cholinergic Neurons

2022 ◽  
pp. JN-RM-1676-21
Author(s):  
Yuqi Ren ◽  
Yang Liu ◽  
Sanduo Zheng ◽  
Minmin Luo
Author(s):  
Esther Luquin ◽  
Beatriz Paternain ◽  
Inés Zugasti ◽  
Carmen Santomá ◽  
Elisa Mengual

AbstractTo better understand GABAergic transmission at two targets of basal ganglia downstream projections, the pedunculopontine (PPN) and laterodorsal (LDT) tegmental nuclei, the anatomical localization of GABAA and GABAB receptors was investigated in both nuclei. Specifically, the total number of neurons expressing the GABAA receptor γ2 subunit (GABAAR γ2) and the GABAB receptor R2 subunit (GABAB R2) in PPN and LDT was estimated using stereological methods, and the neurochemical phenotype of cells expressing each subunit was also determined. The mean number of non-cholinergic cells expressing GABAAR γ2 was 9850 ± 1856 in the PPN and 8285 ± 962 in the LDT, whereas those expressing GABAB R2 were 7310 ± 1970 and 9170 ± 1900 in the PPN and LDT, respectively. In addition, all cholinergic neurons in both nuclei co-expressed GABAAR γ2 and 95–98% of them co-expressed GABAB R2. Triple labeling using in situ hybridization revealed that 77% of GAD67 mRNA-positive cells in the PPT and 49% in the LDT expressed GABAAR γ2, while 90% (PPN) and 65% (LDT) of Vglut2 mRNA-positive cells also expressed GABAAR γ2. In contrast, a similar proportion (~2/3) of glutamatergic and GABAergic cells co-expressed GABAB R2 in both nuclei. The heterogeneous distribution of GABAAR and GABABR among non-cholinergic cells in PPN and LDT may give rise to physiological differences within each neurochemical subpopulation. In addition, the dissimilar proportion of GABAAR γ2-expressing glutamatergic and GABAergic neurons in the PPN and LDT may contribute to some of the functional differences found between the two nuclei.


Author(s):  
K.A. Carson ◽  
C.B. Nemeroff ◽  
M.S. Rone ◽  
J.S. Kizer ◽  
J.S. Hanker

Biochemical, physiological, pharmacological, and more recently enzyme histo- chemical data have indicated that cholinergic circuits exist in the hypothalamus. Ultrastructural correlates of these pathways such as acetylcholinesterase (AchE) positive neurons in the arcuate nucleus (ARC) and stained terminals in the median eminence (ME) have yet to be described. Initial studies in our laboratories utilizing chemical lesioning and microdissection techniques coupled with microchemical and light microscopic enzyme histo- chemical studies suggested the existence of cholinergic neurons in the ARC which project to the ME (1). Furthermore, in adult male rats with Halasz deafferentations (hypothalamic islands composed primarily of the isolated ARC and the ME) choline acetyltransferase (ChAc) activity, a good marker for cholinergic neurons, was not significantly reduced in the ME and was only somewhat reduced in the ARC (2). Treatment of neonatal rats with high doses of monosodium 1-glutamate (MSG) results in a lesion largely restricted to the neurons of the ARC.


2005 ◽  
Vol 173 (4S) ◽  
pp. 44-45
Author(s):  
Quan-Ming Zhu ◽  
Dong-Qing Hu ◽  
David R. Blue ◽  
Philip A. Nunn ◽  
Anthony P.D.W. Ford

Sign in / Sign up

Export Citation Format

Share Document