scholarly journals Medial Frontal Cortex Mediates Perceptual Attentional Set Shifting in the Rat

2000 ◽  
Vol 20 (11) ◽  
pp. 4320-4324 ◽  
Author(s):  
Jennifer M. Birrell ◽  
Verity J. Brown
2021 ◽  
Author(s):  
Zakaria Ouhaz ◽  
Brook AL Perry ◽  
Kouichi Nakamura ◽  
Anna S Mitchell

AbstractCognitive flexibility, attributed to frontal cortex, is vital for navigating the complexities of everyday life. The mediodorsal thalamus (MD), interconnected to frontal cortex, may influence cognitive flexibility. Here rats performed an attentional set-shifting task measuring intra-dimensional and extra-dimensional shifts in sensory discriminations. MD lesion rats needed more trials to learn the rewarded sensory dimension. However, once the choice response strategy was established, learning further two-choice discriminations in the same sensory dimension, and reversals of the reward contingencies in the same dimension, were unimpaired. Critically though, MD lesion rats were impaired during the extra-dimensional shift, when they must rapidly update the optimal choice response strategy. Behavioral analyses showed MD lesion rats had significantly reduced ‘on-the-fly’ correct second choice responses. Diminshed c-Fos expression in the prelimbic and orbitofrontal cortex was also documented. This evidence shows transfer of information via the MD is critical when monitoring and rapid updates in established choice response strategies are required.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmoud Harb ◽  
Justina Jagusch ◽  
Archana Durairaja ◽  
Thomas Endres ◽  
Volkmar Leßmann ◽  
...  

AbstractBrain-derived neurotrophic factor (BDNF) is implicated in a number of processes that are crucial for healthy functioning of the brain. Schizophrenia is associated with low BDNF levels in the brain and blood, however, not much is known about BDNF’s role in the different symptoms of schizophrenia. Here, we used BDNF-haploinsufficient (BDNF+/−) mice to investigate the role of BDNF in different mouse behavioral endophenotypes of schizophrenia. Furthermore, we assessed if an enriched environment can prevent the observed changes. In this study, male mature adult wild-type and BDNF+/− mice were tested in mouse paradigms for cognitive flexibility (attentional set shifting), sensorimotor gating (prepulse inhibition), and associative emotional learning (safety and fear conditioning). Before these tests, half of the mice had a 2-month exposure to an enriched environment, including running wheels. After the tests, BDNF brain levels were quantified. BDNF+/− mice had general deficits in the attentional set-shifting task, increased startle magnitudes, and prepulse inhibition deficits. Contextual fear learning was not affected but safety learning was absent. Enriched environment housing completely prevented the observed behavioral deficits in BDNF+/− mice. Notably, the behavioral performance of the mice was negatively correlated with BDNF protein levels. These novel findings strongly suggest that decreased BDNF levels are associated with several behavioral endophenotypes of schizophrenia. Furthermore, an enriched environment increases BDNF protein to wild-type levels and is thereby able to rescue these behavioral endophenotypes.


Sign in / Sign up

Export Citation Format

Share Document