scholarly journals The Role of Cortical Activity in Experience-Dependent Potentiation and Depression of Sensory Responses in Rat Barrel Cortex

2001 ◽  
Vol 21 (11) ◽  
pp. 3881-3894 ◽  
Author(s):  
Helen Wallace ◽  
Stanislaw Glazewski ◽  
Katherine Liming ◽  
Kevin Fox
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

AbstractThe rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. Layer 5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of layer 5a in the development of the barrel cortex remains unclear. Previously, we found that calretinin is dynamically expressed in layer 5a. In this study, we analyzed calretinin KO mice and found that the dendritic complexity and length of layer 5a pyramidal neurons were significantly decreased after calretinin ablation. The membrane excitability and excitatory synaptic transmission of layer 5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, layer 4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Calretinin KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of layer 5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2021 ◽  
Author(s):  
Simeng Gu ◽  
Wei Wang ◽  
Kuan Zhang ◽  
Rou Feng ◽  
Naling Li ◽  
...  

Abstract Different effects of astrocyte during sleep and awake have been extensively studied, especially for metabolic clearance by the glymphatic system, which works during sleep and stops working during waking states. However, how astrocytes contribute to modulation of sensory transmission during sleep and awake animals remain largely unknown. Recent advances in genetically encoded Ca2+ indicators have provided a wealth of information on astrocytic Ca2+, especially in their fine perisynaptic processes, where astrocytic Ca2+ most likely affects the synaptic function. Here we use two-photon microscopy to image astrocytic Ca2+ signaling in freely moving mice trained to run on a wheel in combination with in vivo whole-cell recordings to evaluate the role of astrocytic Ca2+ signaling in different behavior states. We found that there are two kinds of astrocytic Ca2+ signaling: a small long-lasting Ca2+ increase during sleep state and a sharp widespread but short-long-lasting Ca2+ spike when the animal was awake (fluorescence increases were 23.2 ± 14.4% for whisker stimulation at sleep state, compared with 73.3 ± 11.7% for at awake state, paired t-test, p < 0.01). The small Ca2+ transients decreased extracellular K+, hyperpolarized the neurons, and suppressed sensory transmission; while the large Ca2+ wave enhanced sensory input, contributing to reliable sensory transmission in aroused states. Locus coeruleus activation works as a switch between these two kinds of astrocytic Ca2+ elevation. Thus, we show that cortical astrocytes play an important role in processing of sensory input. These two types of events appear to have different pharmacological sources and may play a different role in facilitating the efficacy of sensory transmission.


2021 ◽  
Author(s):  
Mingzhao Su ◽  
Junhua Liu ◽  
Baocong Yu ◽  
Kaixing Zhou ◽  
Congli Sun ◽  
...  

Abstract The rodent whisker-barrel cortex system has been established as an ideal model for studying sensory information integration. The barrel cortex consists of barrel and septa columns that receive information input from the lemniscal and paralemniscal pathways, respectively. L5a is involved in both barrel and septa circuits and play a key role in information integration. However, the role of L5a in the development of the barrel cortex remains unclear. Previously, we found that Calretinin is dynamically expressed in L5a. In this study, we analyzed Cr KO mice and found that the dendritic complexity and length of L5a pyramidal neurons were significantly decreased after Cr ablation. The membrane excitability and excitatory synaptic transmission of L5a neurons were increased. Consequently, the organization of the barrels was impaired. Moreover, L4 spiny stellate cells were not able to properly gather, leading to abnormal formation of barrel walls as the ratio of barrel/septum size obviously decreased. Cr KO mice exhibited deficits in exploratory and whisker-associated tactile behaviors as well as social novelty preference. Our study expands our knowledge of L5a pyramidal neurons in the formation of barrel walls and deepens the understanding of the development of the whisker-barrel cortex system.


2012 ◽  
Vol 108 (5) ◽  
pp. 1278-1287 ◽  
Author(s):  
Rebekah L. Ward ◽  
Luke C. Flores ◽  
John F. Disterhoft

The barrel cortex (BC) is essential for the acquisition of whisker-signaled trace eyeblink conditioning and shows learning-related expansion of the trained barrels after the acquisition of a whisker-signaled task. Most previous research examining the role of the BC in learning has focused on anatomic changes in the layer IV representation of the cortical barrels. We studied single-unit extracellular recordings from individual neurons in layers V and VI of the BC as rabbits acquired the whisker-signaled trace eyeblink conditioning task. Neurons in layers V and VI in both conditioned and pseudoconditioned animals robustly responded to whisker stimulation, but neurons in conditioned animals showed a significant enhancement in responsiveness in concert with learning. Learning-related changes in firing rate occurred as early as the day of learning criterion within the infragranular layers of the primary sensory cortex.


2005 ◽  
Vol 94 (5) ◽  
pp. 3342-3356 ◽  
Author(s):  
Lu Li ◽  
V. Rema ◽  
Ford F. Ebner

Numerous lines of evidence indicate that neural information is exchanged between the cerebral hemispheres via the corpus callosum. Unilateral ablation lesions of barrel field cortex (BFC) in adult rats induce strong suppression of background and evoked activity in the contralateral barrel cortex and significantly delay the onset of experience-dependent plasticity. The present experiments were designed to clarify the basis for these interhemispheric effects. One possibility is that degenerative events, triggered by the lesion, degrade contralateral cortical function. Another hypothesis, alone or in combination with degeneration, is that the absence of interhemispheric activity after the lesion suppresses contralateral responsiveness. The latter hypothesis was tested by placing an Alzet minipump subcutaneously and connecting it via a delivery tube to a cannula implanted over BFC. The minipump released muscimol, a GABAA receptor agonist at a rate of 1 μl/h, onto one barrel field cortex for 7 days. Then with the pump still in place, single cells were recorded in the contralateral BFC under urethan anesthesia. The data show a ∼50% reduction in principal whisker responses (D2) compared with controls, with similar reductions in responses to the D1 and D3 surround whiskers. Despite these reductions, spontaneous firing is unaffected. Fast spiking units are more sensitive to muscimol application than regular spiking units in both the response magnitude and the center/surround ratio. Effects of muscimol are also layer specific. Layer II/III and layer IV neurons decrease their responses significantly, unlike layer V neurons that fail to show significant deficits. The results indicate that reduced activity in one hemisphere alters cortical excitability in the other hemisphere in a complex manner. Surprisingly, a prominent response decrement occurs in the short-latency (3–10 ms) component of principal whisker responses, suggesting that suppression may spread to neurons dominated by thalamocortical inputs after interhemispheric connections are inactivated. Bilateral neurological impairments have been described after unilateral stroke lesions in the clinical literature.


2020 ◽  
Vol 94 ◽  
pp. 185-195
Author(s):  
Federico Quinzi ◽  
Marika Berchicci ◽  
Valentina Bianco ◽  
Gloria Di Filippo ◽  
Rinaldo Livio Perri ◽  
...  

2016 ◽  
Vol 52 ◽  
pp. 56-70 ◽  
Author(s):  
Niklas Ravaja ◽  
Pekka Korhonen ◽  
Murat Köksalan ◽  
Jari Lipsanen ◽  
Mikko Salminen ◽  
...  
Keyword(s):  

2004 ◽  
Vol 92 (1) ◽  
pp. 144-156 ◽  
Author(s):  
Miguel Maravall ◽  
Edward A. Stern ◽  
Karel Svoboda

The development of layer 2/3 sensory maps in rat barrel cortex (BC) is experience dependent with a critical period around postnatal days (PND) 10–14. The role of intrinsic response properties of neurons in this plasticity has not been investigated. Here we characterize the development of BC layer 2/3 intrinsic responses to identify possible sites of plasticity. Whole cell recordings were performed on pyramidal cells in acute BC slices from control and deprived rats, over ages spanning the critical period (PND 12, 14, and 17). Vibrissa trimming began at PND 9. Spiking behavior changed from phasic (more spike frequency adaptation) to regular (less adaptation) with age, such that the number of action potentials per stimulus increased. Changes in spiking properties were related to the strength of a slow Ca2+-dependent afterhyperpolarization. Maturation of the spiking properties of layer 2/3 pyramidal neurons coincided with the close of the critical period and was delayed by deprivation. Other measures of excitability, including I-f curves and passive membrane properties, were affected by development but unaffected by whisker deprivation.


2015 ◽  
Vol 114 (2) ◽  
pp. 1158-1171 ◽  
Author(s):  
Cory T. Miller ◽  
A. Wren Thomas ◽  
Samuel U. Nummela ◽  
Lisa A. de la Mothe

The role of primate frontal cortex in vocal communication and its significance in language evolution have a controversial history. While evidence indicates that vocalization processing occurs in ventrolateral prefrontal cortex neurons, vocal-motor activity has been conjectured to be primarily subcortical and suggestive of a distinctly different neural architecture from humans. Direct evidence of neural activity during natural vocal communication is limited, as previous studies were performed in chair-restrained animals. Here we recorded the activity of single neurons across multiple regions of prefrontal and premotor cortex while freely moving marmosets engaged in a natural vocal behavior known as antiphonal calling. Our aim was to test whether neurons in marmoset frontal cortex exhibited responses during vocal-signal processing and/or vocal-motor production in the context of active, natural communication. We observed motor-related changes in single neuron activity during vocal production, but relatively weak sensory responses for vocalization processing during this natural behavior. Vocal-motor responses occurred both prior to and during call production and were typically coupled to the timing of each vocalization pulse. Despite the relatively weak sensory responses a population classifier was able to distinguish between neural activity that occurred during presentations of vocalization stimuli that elicited an antiphonal response and those that did not. These findings are suggestive of the role that nonhuman primate frontal cortex neurons play in natural communication and provide an important foundation for more explicit tests of the functional contributions of these neocortical areas during vocal behaviors.


2007 ◽  
Vol 0 (0) ◽  
pp. 070915195953006-??? ◽  
Author(s):  
Carly K. Peterson ◽  
Alexander J. Shackman ◽  
Eddie Harmon-Jones
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document