scholarly journals Stimulation of the Calcitonin Gene-Related Peptide Enhancer by Mitogen-Activated Protein Kinases and Repression by an Antimigraine Drug in Trigeminal Ganglia Neurons

2003 ◽  
Vol 23 (3) ◽  
pp. 807-815 ◽  
Author(s):  
Paul L. Durham ◽  
Andrew F. Russo
2000 ◽  
Vol 389 (2-3) ◽  
pp. 125-130 ◽  
Author(s):  
Narayanan Parameswaran ◽  
Jyoti Disa ◽  
William S. Spielman ◽  
David P. Brooks ◽  
Ponnal Nambi ◽  
...  

1989 ◽  
Vol 256 (2) ◽  
pp. E331-E335 ◽  
Author(s):  
T. Chiba ◽  
A. Yamaguchi ◽  
T. Yamatani ◽  
A. Nakamura ◽  
T. Morishita ◽  
...  

From this study, we predicted that the human calcitonin gene-related peptide (hCGRP) fragment hCGRP-(8-37) would be a selective antagonist for CGRP receptors but an agonist for calcitonin (CT) receptors. In rat liver plasma membrane, where CGRP receptors predominate and CT appears to act through these receptors, hCGRP-(8-37) dose dependently displaced 125I-[Tyr0]rat CGRP binding. However, hCGRP-(8-37) had no effect on adenylate cyclase activity in liver plasma membrane. Furthermore, hCGRP-(8-37) inhibited adenylate cyclase activation induced not only by hCGRP but also by hCT. On the other hand, in LLC-PK1 cells, where calcitonin receptors are abundant and CGRP appears to act via these receptors, the bindings of 125I-[Tyr0]rat CGRP and 125I-hCT were both inhibited by hCGRP-(8-37). In contrast to liver membranes, interaction of hCGRP-(8-37) with these receptors led to stimulation of adenosine 3',5'-cyclic monophosphate (cAMP) production in LLC-PK1 cells, and moreover, this fragment did not inhibit the increased production of cAMP induced not only by hCT but also by hCGRP. Thus hCGRP-(8-37) appears to be a useful tool for determining whether the action of CGRP as well as that of CT is mediated via specific CGRP receptors or CT receptors.


1990 ◽  
Vol 259 (6) ◽  
pp. G934-G939 ◽  
Author(s):  
M. W. Mulholland ◽  
S. Jaffer

The effects of calcitonin gene-related peptide (CGRP) on acetylcholine (ACh) release from myenteric plexus neurons in primary culture were investigated. CGRP (10(-12) to 10(-6) M) produced a dose-dependent increase in [3H]ACh release. The ACh release caused by CGRP was significantly inhibited (74 +/- 24%) by preincubation with dideoxyadenosine but was increased more than threefold by preincubation with theophylline. Incubation of myenteric plexus neurons with CGRP (10(-8) M) in the presence of diltiazem (10(-5) M) or in a calcium-free medium markedly reduced [3H]ACh release. CGRP potentiated [3H]ACh release stimulated by potassium or substance P but not by cholecystokinin octapeptide or forskolin. The results demonstrate that CGRP cause release of ACh from guinea pig myenteric plexus neurons and suggest that the peptide acts through an adenosine 3',5'-cyclic monophosphate-dependent mechanism that involves neuronal calcium channels.


Cephalalgia ◽  
2020 ◽  
Vol 40 (12) ◽  
pp. 1283-1295
Author(s):  
Karin Warfvinge ◽  
Diana N Krause ◽  
Aida Maddahi ◽  
Anne-Sofie Grell ◽  
Jacob CA Edvinsson ◽  
...  

Background Recent clinical findings suggest that oxytocin could be a novel treatment for migraine. However, little is known about the role of this neuropeptide/hormone and its receptor in the trigeminovascular pathway. Here we determine expression, localization, and function of oxytocin and oxytocin receptors in rat trigeminal ganglia and targets of peripheral (dura mater and cranial arteries) and central (trigeminal nucleus caudalis) afferents. Methods The methods include immunohistochemistry, messenger RNA measurements, quantitative PCR, release of calcitonin gene-related peptide and myography of arterial segments. Results Oxytocin receptor mRNA was expressed in rat trigeminal ganglia and the receptor protein was localized in numerous small to medium-sized neurons and thick axons characteristic of A∂ sensory fibers. Double immunohistochemistry revealed only a small number of neurons expressing both oxytocin receptors and calcitonin gene-related peptide. In contrast, double immunostaining showed expression of the calcitonin gene-related peptide receptor component receptor activity-modifying protein 1 and oxytocin receptors in 23% of the small cells and in 47% of the medium-sized cells. Oxytocin immunofluorescence was observed only in trigeminal ganglia satellite glial cells. Oxytocin mRNA was below detection limit in the trigeminal ganglia. The trigeminal nucleus caudalis expressed mRNA for both oxytocin and its receptor. K+-evoked calcitonin gene-related peptide release from either isolated trigeminal ganglia or dura mater and it was not significantly affected by oxytocin (10 µM). Oxytocin directly constricted cranial arteries ex vivo (pEC50 ∼ 7); however, these effects were inhibited by the vasopressin V1A antagonist SR49059. Conclusion Oxytocin receptors are extensively expressed throughout the rat trigeminovascular system and in particular in trigeminal ganglia A∂ neurons and fibers, but no functional oxytocin receptors were demonstrated in the dura and cranial arteries. Thus, circulating oxytocin may act on oxytocin receptors in the trigeminal ganglia to affect nociception transmission. These effects may help explain hormonal influences in migraine and offer a novel way for treatment.


Cephalalgia ◽  
1993 ◽  
Vol 13 (3) ◽  
pp. 180-183 ◽  
Author(s):  
Richard D Piper ◽  
Lars Edvinsson ◽  
Rolf Ekman ◽  
Geoffrey A Lambert

There is circumstantial evidence that cortical spreading depression (SD) may account for the scotoma and the “spreading cortical oligemia” seen during migraine with aura. It has been shown that calcitonin gene-related peptide (CGRP) is increased in blood taken from the external jugular vein (EJV) in humans during migraine and after stimulation of the trigeminal ganglion. To test the hypothesis that cortical SD may elevate the concentration of this vasoactive peptide in the EJV during migraine, we have measured its concentration in the external jugular vein of cats during cortical SD. This study demonstrates that SD has no effect on the concentration of CGRP either during the passage of a wave of spreading depression across the cortex or, 60 min later, during the period of post-SD cortical oligemia.


Sign in / Sign up

Export Citation Format

Share Document