scholarly journals Dual Modulation of Nociception and Cardiovascular Reflexes during Peripheral Ischemia through P2Y1 Receptor-Dependent Sensitization of Muscle Afferents

2016 ◽  
Vol 36 (1) ◽  
pp. 19-30 ◽  
Author(s):  
L. F. Queme ◽  
J. L. Ross ◽  
P. Lu ◽  
R. C. Hudgins ◽  
M. P. Jankowski
2019 ◽  
Vol 317 (5) ◽  
pp. R641-R648 ◽  
Author(s):  
Joyce S. Kim ◽  
Jonathan E. Harms ◽  
Victor Ruiz-Velasco ◽  
Marc P. Kaufman

The exercise pressor reflex is initiated by the contraction-induced activation of group III and IV muscle afferents. The reflex is manifested by increases in arterial blood pressure and cardiac output, which, in turn, are generated by increases in the sympathetic outflow to the heart and vasculature and decreases in the vagal outflow to the heart. In previous experiments, we used a pharmacological approach to assess the role played by the acid-sensing ion channel 3 (ASIC3) on group III and IV afferents in evoking the exercise pressor reflex. In the present experiments, we used an alternative approach, namely functional knockout (KO) of the ASIC3 gene, to confirm and extend our previous finding that pharmacological blockade of the ASIC3 had only a small impact on the expression of the exercise pressor reflex when the arterial supply to the contracting hindlimb muscles of rats was patent. Using this alternative approach, we compared the magnitude of the exercise pressor reflex evoked in ASIC3 KO rats with that evoked in their wild-type (WT) counterparts. We found both WT and ASIC3 KO rats displayed similar pressor responses to static contraction (WT, n = 10, +12 ± 2 mmHg; KO, n = 9, +11 ± 2 mmHg) and calcaneal tendon stretch (WT, n = 9, +13 ± 2 mmHg; KO, n = 7, +11 ± 2 mmHg). Likewise, both WT and ASIC3 KO displayed similar pressor responses to intra-arterial injection of 12 mM lactic acid (WT, n = 9, +14 ± 3 mmHg; KO, n = 8, +18 ± 5 mmHg), 24 mM lactic acid (WT, n = 9,+24 ± 2 mmHg; KO, n = 8, +20 ± 5 mmHg), capsaicin (WT, n = 9,+27 ± 5 mmHg; KO, n = 10, +29 ± 5 mmHg), and diprotonated phosphate ([Formula: see text]; WT, n = 6,+22 ± 3 mmHg; KO, n = 6, +32 ± 6 mmHg). We conclude that redundant receptors are responsible for evoking the pressor reflexes arising from group III and IV afferents.


2019 ◽  
Author(s):  
Luis F. Queme ◽  
Alex A. Weyler ◽  
Elysia R. Cohen ◽  
Renita C Hudgins ◽  
Michael P. Jankowski

AbstractGroup III/IV muscle afferents transduce nociceptive signals and modulate exercise pressor reflexes (EPR). However, the mechanisms governing afferent responsiveness to dually modulate these processes are not well characterized. We and others have shown that ischemic injury can induce both nociception-related behaviors and exacerbated EPRs in the same mice. This correlated with primary muscle afferent sensitization and increased expression of glial cell line-derived neurotrophic factor (GDNF) in injured muscle and increased expression of GDNF family receptor α1 (GFRα1) in DRGs. Here we report that increased GDNF/GFRα1 signaling to sensory neurons from ischemia/reperfusion affected muscle modulated nociceptive-like behaviors, increased EPRs, and group III/IV muscle afferent sensitization. This appeared to have taken effect through increased CREB/CREB-binding protein mediated expression of the purinergic receptor P2X5 in the DRGs. Muscle GDNF signaling to neurons may play an important dual role in nociception and sympathetic reflexes and could provide a novel therapeutic target for treating complications from ischemic injuries.


1997 ◽  
Vol 78 (06) ◽  
pp. 1500-1504 ◽  
Author(s):  
Catherine Vial ◽  
Béatrice Hechier ◽  
Catherine Léon ◽  
Jean-Pierre Cazenave ◽  
Christian Gachet

SummaryHuman platelets are thought to possess at least two subtypes of purinoceptor, one of which, coupled to G-proteins, could be the P2Y1 receptor (Léon et al. 1997). However, it has been suggested that the unique rapid calcium influx induced by ADP in platelets could involve P2X1 ionotropic receptors (MacKenzie et al. 1996) and the aim of this study was thus to investigate the presence of P2X purinoceptors in platelets and megakaryoblastic cells. Using PCR experiments, we found P2X1 mRNA to be present in human platelets and megakaryoblastic cell lines. In platelets, the selective P2X1 agonist αβMeATP induced a rise in intracellular calcium only in the presence of external calcium and this effect was antagonized by suramin and PPADS. Repeated addition of a�MeATP desensitized the P2X1 purinoceptor but only slightly affected the ADP response, while no calcium response to αβMeATP was observed in megakaryoblastic cells. These results support the existence of functional P2X1 purinoceptors on human platelets and the presence of P2X1 transcripts in megakaryoblastic cell lines.


Circulation ◽  
1996 ◽  
Vol 93 (5) ◽  
pp. 940-952 ◽  
Author(s):  
Massimo Piepoli ◽  
Andrew L. Clark ◽  
Maurizio Volterrani ◽  
Stamatis Adamopoulos ◽  
Peter Sleight ◽  
...  

2017 ◽  
Vol 596 (15) ◽  
pp. 3245-3269 ◽  
Author(s):  
Vishaal Rajani ◽  
Yong Zhang ◽  
Venkatesh Jalubula ◽  
Vladimir Rancic ◽  
Shahriar SheikhBahaei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document