scholarly journals Inhibition of Adult Rat Retinal Ganglion Cells by D1-Type Dopamine Receptor Activation

2009 ◽  
Vol 29 (47) ◽  
pp. 15001-15016 ◽  
Author(s):  
Y. Hayashida ◽  
C. V. Rodriguez ◽  
G. Ogata ◽  
G. J. Partida ◽  
H. Oi ◽  
...  
2013 ◽  
Vol 6 (1) ◽  
pp. 015001 ◽  
Author(s):  
Barbara Lorber ◽  
Wen-Kai Hsiao ◽  
Ian M Hutchings ◽  
Keith R Martin

2004 ◽  
Vol 92 (5) ◽  
pp. 3134-3141 ◽  
Author(s):  
Yuki Hayashida ◽  
Andrew T. Ishida

We tested whether dopamine receptor activation modulates the voltage-gated Na+ current of goldfish retinal ganglion cells, using a fast voltage-clamp amplifier, perforated-patch whole cell mode, and a physiological extracellular Na+ concentration. As found in other cells, activators of D1-type dopamine receptors and of protein kinase A reduced the amplitude of current activated by depolarizations from resting potential without altering the current kinetics or activation range. However, D1-type dopamine receptor activation also accelerated the rate of entry into inactivation during subthreshold depolarizations and slowed the rate of recovery from inactivation after single, brief depolarizations. Our results provide the first evidence in any preparation that D1-type receptor activation can produce both of these latter effects.


2011 ◽  
Vol 52 (8) ◽  
pp. 5515 ◽  
Author(s):  
Preethi S. Ganapathy ◽  
Richard E. White ◽  
Yonju Ha ◽  
B. Renee Bozard ◽  
Paul L. McNeil ◽  
...  

Development ◽  
1999 ◽  
Vol 126 (24) ◽  
pp. 5713-5724 ◽  
Author(s):  
K.L. McCabe ◽  
E.C. Gunther ◽  
T.A. Reh

Neurons in both vertebrate and invertebrate eyes are organized in regular arrays. Although much is known about the mechanisms involved in the formation of the regular arrays of neurons found in invertebrate eyes, much less is known about the mechanisms of formation of neuronal mosaics in the vertebrate eye. The purpose of these studies was to determine the cellular mechanisms that pattern the first neurons in vertebrate retina, the retinal ganglion cells. We have found that the ganglion cells in the chick retina develop as a patterned array that spreads from the central to peripheral retina as a wave front of differentiation. The onset of ganglion cell differentiation keeps pace with overall retinal growth; however, there is no clear cell cycle synchronization at the front of differentiation of the first ganglion cells. The differentiation of ganglion cells is not dependent on signals from previously formed ganglion cells, since isolation of the peripheral retina by as much as 400 μm from the front of ganglion cell differentiation does not prevent new ganglion cells from developing. Consistent with previous studies, blocking FGF receptor activation with a specific inhibitor to the FGFRs retards the movement of the front of ganglion cell differentiation, while application of exogenous FGF1 causes the precocious development of ganglion cells in peripheral retina. Our observations, taken together with those of previous studies, support a role for FGFs and FGF receptor activation in the initial development of retinal ganglion cells from the undifferentiated neuroepithelium peripheral to the expanding wave front of differentiation.


Neuroscience ◽  
2019 ◽  
Vol 408 ◽  
pp. 400-417 ◽  
Author(s):  
Allison M. Cleymaet ◽  
Shannon K. Gallagher ◽  
Ryan E. Tooker ◽  
Mikhail Y. Lipin ◽  
Jordan M. Renna ◽  
...  

2007 ◽  
Vol 97 (5) ◽  
pp. 3790-3799 ◽  
Author(s):  
Sherwin C. Lee ◽  
Andrew T. Ishida

Antisera directed against hyperpolarization-activated mixed-cation (“ Ih”) and K+ (“Kir”) channels bind to some somata in the ganglion cell layer of rat and rabbit retina. Additionally, the termination of hyperpolarizing current injections can trigger spikes in some cat retinal ganglion cells, suggesting a rebound depolarization arising from activation of Ih. However, patch-clamp studies showed that rat ganglion cells lack inward rectification or present an inwardly rectifying K+ current. We therefore tested whether hyperpolarization activates Ih in dissociated, adult rat retinal ganglion cell somata. We report here that, although we found no inward rectification in some cells, and a Kir-like current in a few cells, hyperpolarization activated Ih in roughly 75% of the cells we recorded from in voltage clamp. We show that this current is blocked by Cs+ or ZD7288 and only slightly reduced by Ba2+, that the current amplitude and reversal potential are sensitive to extracellular Na+ and K+, and that we found no evidence of Kir in cells presenting Ih. In current clamp, injecting hyperpolarizing current induced a slowly relaxing membrane hyperpolarization that rebounded to a few action potentials when the hyperpolarizing current was stopped; both the membrane potential relaxation and rebound spikes were blocked by ZD7288. These results provide the first measurement of Ih in mammalian retinal ganglion cells and indicate that the ion channels of rat retinal ganglion cells may vary in ways not expected from previous voltage and current recordings.


2000 ◽  
Vol 17 (1) ◽  
pp. 91-95 ◽  
Author(s):  
QINGJUN LU ◽  
ALEX STRAIKER ◽  
QINGXIAN LU ◽  
GREG MAGUIRE

To date, two cannabinoid receptors, CB1 and CB2, have been cloned. The CB1 receptor has been found in a variety of tissues, particularly in the brain. CB2 receptor mRNA is mainly expressed in the immune system, though one group has found it in mouse cerebellum. Previous immunostaining studies in our lab demonstrated the presence of CB1 receptors in the retina though little evidence exists for the presence of CB2. The putative endogenous ligand for CB2 has been found in retina, however, suggesting that further study of CB2 in retina is warranted. Because glutamate is toxic to retinal ganglion cells in glaucoma and activation of CB2 receptors may be able to protect neurons from glutamate-induced death, we examined the expression of CB2 mRNA in adult rat retina in order to better understand possible neuroprotective mechanisms relevant to glaucoma. Using in situ hybridization, we demonstrated that CB2 cannabinoid receptor messenger RNA was clearly expressed in the adult rat retina, including the somas of retinal ganglion cells. Antisense cRNA probe detected strong signals in the retinal ganglion cell layer, the inner nuclear layer, and the inner segments of photoreceptor cells. Using reverse transcription polymerase chain reaction (RT-PCR) in both rat and mouse tissue, we obtained an RT-PCR product with the same sequence as that reported for CB2 in the GenBank database, thus confirming the presence of CB2 mRNA in retina. The presence of CB2 in retina provides new evidence for the presence of CB2 in the central nervous system (CNS) and an excellent model for its study.


Sign in / Sign up

Export Citation Format

Share Document