scholarly journals Feeding vitamin E may reverse sarcoplasmic reticulum membrane instability caused by feeding wet distillers grains plus solubles to cattle

2017 ◽  
Vol 33 (1) ◽  
pp. 12-23 ◽  
Author(s):  
M.D. Chao ◽  
K.I. Domenech-Pérez ◽  
C.R. Calkins
2018 ◽  
Vol 58 (12) ◽  
pp. 2215 ◽  
Author(s):  
M. D. Chao ◽  
K. I. Domenech-Perez ◽  
L. S. Senaratne-Lenagala ◽  
C. R. Calkins

Feeding wet distillers grains plus solubles (WDGS) increases polyunsaturated fatty acid (PUFA) levels in beef. It was hypothesised that WDGS in feedlot diets increases PUFA concentration in the sarcoplasmic reticulum (SR) membrane, thereby altering membrane integrity, resulting in more rapid intracellular calcium leakage and improved tenderness. The objective of this study was to evaluate this hypothesis. Ninety-six crossbred steers were fed either a corn-based diet with 0% WDGS or 50% WDGS. Fifteen strip loins per treatment were collected, fabricated into steaks, aged and placed under retail display conditions. Steaks were used to measure tenderness, proteolysis, free calcium concentrations, lipid oxidation, sarcomere length and SR membrane fatty acid, phospholipid lipid, neutral lipid and total lipid profiles. Compared with steaks from steers fed 0% WDGS, steaks from steers fed 50% WDGS were more tender (P < 0.05) and had greater (P < 0.05) free calcium concentrations early post-mortem. Feeding 50% WDGS also tended to increase (P < 0.10) total PUFA concentrations, decrease (P < 0.10) total phospholipid concentration and increase (P < 0.10) total neutral lipid concentration for SR membrane. Steaks from steers fed 0% WDGS had greater (P < 0.05) lipid oxidation (TBARS values) than steaks from steers fed 50% WDGS after extended aging. Although differences in tenderness between the two treatments were detected, there were no corresponding differences (P > 0.10) in sarcomere length or proteolysis. This study showed that feeding WDGS may increase tenderness, possibly by increasing free calcium in muscle early post-mortem. However, the true mechanism that contributes to these differences is still unclear.


2018 ◽  
Vol 58 (10) ◽  
pp. 1949 ◽  
Author(s):  
M. D. Chao ◽  
K. I. Domenech-Pérez ◽  
H. R. Voegele ◽  
E. K. Kunze ◽  
C. R. Calkins

Feeding wet distillers grains plus solubles (WDGS) in beef feedlot diets increases beef polyunsaturated fatty acids (PUFA) concentration and decreases shelf-life; whereas feeding antioxidants like vitamin E and Agrado-Plus (AG; an ethoxyquin and tert-Butylhydroquinone mixture) mitigates such effects. The objective of this study was to evaluate shelf-life of beef from steers supplemented with WDGS and different antioxidants. One hundred and sixty steers were finished on a corn-based diet with 0% WDGS or 30% WDGS and four antioxidant treatments (no supplementation; vitamin E only; AG only; vitamin E + AG). Ten strip loins from each treatment were collected, aged, cut into steaks, and placed under retail display (2 ± 2°C). During retail display, steaks were evaluated daily for objective colour and subjective discolouration. After retail display, steaks were used to measure lipid oxidation, muscle fatty acids, and vitamin E and ethoxyquin concentrations. Feeding 30% WDGS increased total PUFA in beef when compared with beef from steers fed 0% WDGS (P < 0.05). Supplementing vitamin E or vitamin E + AG was effective in decreasing myoglobin and lipid oxidation in steaks from steers fed 0% or 30% WDGS after retail display (P < 0.01). Supplementation of vitamin E or AG also increased (P < 0.01) muscle tissue vitamin E or ethoxyquin levels, respectively, compared with the diets without vitamin E or AG supplementation. The inclusion of 30% WDGS altered beef fatty acid profiles, but did not promote lipid and myoglobin oxidation compared with the 0% WDGS diet. Feeding vitamin E was effective, whereas supplementing AG had minor effects in decreasing myoglobin and lipid oxidation in steaks from both diet.


1971 ◽  
Vol 49 (10) ◽  
pp. 909-918 ◽  
Author(s):  
Margaret Fedelesova ◽  
Prakash V. Sulakhe ◽  
John C. Yates ◽  
Naranjan S. Dhalla

Feeding a vitamin E deficient diet to rats for 10 weeks was found to decrease myocardial creatine phosphate, ATP, ATP/ADP ratio, NAD+, NADP+, and NADPH, whereas the level of ADP was increased without any changes in the levels of AMP, total adenine nucleotides, NADH, and ATP/AMP ratio. The levels of ATP and pyridine nucleotides were restored fully, whereas creatine phosphate was restored partially on feeding a normal diet for 4 weeks to animals previously on the vitamin E deficient diet for 10 weeks. Vitamin E deficiency was found to increase cardiac lactate, pyruvate, and lactate/pyruvate ratio and decrease the activities of lactate dehydrogenase and malate dehydrogenase. The activity of Na+–K+-stimulated, ouabain-sensitive ATPase was markedly elevated in the hearts of animals on the vitamin E deficient diet. The ATP-dependent calcium accumulation by the sarcoplasmic reticular fraction in the absence and presence of P1 or oxalate was greater in the vitamin E deficient heart. Vitamin E deficiency also increased the Ca2+-stimulated ATPase activity of the cardiac sarcoplasmic reticulum. Although myocardial contractility of the hearts from vitamin E deficient rats was depressed, no damage to the ultrastructures of mitochondria and sarcoplasmic reticulum was apparent. These results indicate marked alterations in myocardial metabolism due to vitamin E deficiency and it is suggested that such changes are due to abnormalities in the processes of both energy production and utilization.


Sign in / Sign up

Export Citation Format

Share Document