scholarly journals Bacterial Community Analysis of Two Neighboring Freshwater Lakes Originating from One Lake

2020 ◽  
Vol 30 (1) ◽  
pp. 111-117
Author(s):  
Dabin Guo ◽  
Jiechao Liang ◽  
Wei Chen ◽  
Jian Wang ◽  
Bin Ji ◽  
...  
2016 ◽  
Author(s):  
Jennifer C. Underwood ◽  
◽  
Ronald W. Harvey ◽  
David W. Metge ◽  
Denis R. LeBlanc

Author(s):  
R. Thilagavathi ◽  
S. Nakkeeran ◽  
D. Balachandar ◽  
T. Raguchander ◽  
R. Samiyappan

2020 ◽  
Vol 8 (3) ◽  
pp. 394 ◽  
Author(s):  
Derya Ozuolmez ◽  
Alfons J. M. Stams ◽  
Caroline M. Plugge

The relationship between predominant physiological types of prokaryotes in marine sediments and propionate degradation through sulfate reduction, fermentation, and methanogenesis was studied in marine sediments. Propionate conversion was assessed in slurries containing sediment from three different biogeochemical zones of Aarhus Bay, Denmark. Sediment slurries were amended with 0, 3, or 20 mM sulfate and incubated at 25 °C and 10 °C for 514–571 days. Methanogenesis in the sulfate zone and sulfate reduction in the methane zone slurries was observed. Both processes occurred simultaneously in enrichments originating from samples along the whole sediment. Bacterial community analysis revealed the dominance of Desulfobacteraceae and Desulfobulbaceae members in sulfate-amended slurries incubated at 25°C and 10°C. Cryptanaerobacter belonging to the Peptococcaceae family dominated sulfate-free methanogenic slurries at 25°C, whereas bacteria related to Desulfobacteraceae were dominant at 10°C. Archaeal community analysis revealed the prevalence of different genera belonging to Methanomicrobiales in slurries incubated at different temperatures and amended with different sulfate concentrations. Methanosarcinaceae were only detected in the absence of sulfate. In summary, Aarhus Bay sediment zones contain sulfate reducers, syntrophs, and methanogens interacting with each other in the conversion of propionate. Our results indicate that in Aarhus Bay sediments, Cryptanaerobacter degraded propionate in syntrophic association with methanogens.


Author(s):  
Punniyakotti Elumalai ◽  
Mohamad S. AlSalhi ◽  
Sanjeet Mehariya ◽  
Obulisamy Parthiba Karthikeyan ◽  
Sandhanasamy Devanesan ◽  
...  

2014 ◽  
Vol 172 (7) ◽  
pp. 3433-3447 ◽  
Author(s):  
Yu Chen ◽  
Chen Li ◽  
Zhengxi Zhou ◽  
Jianping Wen ◽  
Xueyi You ◽  
...  

2020 ◽  
Vol 14 (4) ◽  
pp. 476-486
Author(s):  
Tingting Liu ◽  
Caoping Pang ◽  
Fengcai Ye ◽  
Dafei Gong ◽  
Jieling Luo ◽  
...  

Four mine contaminated soils located in northwest of Guangxi autonomous region were selected for microbial community analysis. These mine soils were contaminated by chromium (Cr) and cadmium (Cd). Microbial communities were described by high-throughput sequencing technology, which showed 39 different phyla in four samples. Among these phyla, Proteobacteria was the most abundant phylum in all samples. Acidobacteria, Actinobacteria, Planctomycetes, Firmicutes, Gemmatimonadetes, Bacteroidetes and Chloroflexi showed higher relative abundances than other phyla. In addition, a wide diversity of bacteria with the potential of bioremediation, such as Sphingomonas, Lysobacter and Gemmatimonas were detected in the tested mine contaminated soils. The results of microbial community analysis will provide a new target for isolation of microorganisms with the potential of bioremediation and lay the foundation for a great enhancement of bioremediation ability through the genetic engineering modification of indigenous microorganisms in future.


Sign in / Sign up

Export Citation Format

Share Document