scholarly journals Response of Soil Organic Carbon and Its Active Fractions to Restoration Measures in the Karst Rocky Desertification Ecosystem, SW China

Author(s):  
Yixin Bai ◽  
Maoyin Sheng ◽  
Qijuan Hu ◽  
Chu Zhao ◽  
Hailong Xiao
Forests ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1107 ◽  
Author(s):  
Hui Yang ◽  
Biqin Mo ◽  
Mengxia Zhou ◽  
Tongbin Zhu ◽  
Jianhua Cao

Soil organic carbon (SOC) mineralization is closely related to carbon source or sink of terrestrial ecosystem. Understanding SOC mineralization under plum plantation is essential for improving our understanding of SOC responses to land-use change in karst rocky desertification ecosystem. In this study, 2-year, 5-year, and 20-year plum plantations and adjacent abandoned land dominated by herbs were sampled, and a 90-day incubation experiment was conducted to investigate the effect of plum plantations with different ages on SOC mineralization in subtropical China. Results showed that: (1) Plum plantation significantly decreased SOC content compared with abandoned land, but there was no significant difference in SOC content among plum plantations with different ages. Oppositely, the accumulative SOC mineralization (Ct) and potential SOC mineralization (C0) showed different responses to plum plantation ages. (2) The dynamics of the SOC mineralization were a good fit to a first-order kinetic model. Both C0 and Ct in calcareous soil of this study was several- to 10-folds lower than other soils in non-karst regions, indicating that SOC in karst regions has higher stability. (3) Correlation analysis revealed that both Ct and C0 was significantly correlated with soil calcium (Ca), suggesting an important role of Ca in SOC mineralization in karst rocky desertification areas. In conclusion, a Ca-rich geological background controls SOC mineralization in karst rocky desertification areas.


Author(s):  
Hui Yang ◽  
Biqin Mo ◽  
Mengxia Zhou ◽  
Tongbin Zhu ◽  
Jianhua Cao

Soil organic carbon (SOC) mineralization is closely related to carbon source or sink of terrestrial ecosystem. Understanding soil organic carbon (SOC) mineralization under plum plantation is essential for improving our understanding of SOC responses to land-use change in karst rocky desertification ecosystem. In this study, 2-y, 5-y and 20-y plum plantations and adjacent woodland were sampled and a 90-day incubation experiment was conducted to investigate the effect of plum plantation with different years on SOC mineralization in subtropical China. Results showed that: (1) there was no significant difference in SOC content between different planting years, but there were significant differences in accumulative SOC mineralization (Ct) and potential SOC mineralization (C0); (2) the dynamics of the SOC mineralization was a good fit to a first-order kinetic model. Both C0 and Ct in calcareous soil of this study was several to ten folds lower than that in other soils, indicating that SOC in karst region has higher stability. (3) Correlation analysis revealed that both Ct and C0 was significantly correlated with soil calcium (Ca) and C/N, indicating the important role of Ca and C/N in SOC mineralization in karst rocky desertification area.


2020 ◽  
Vol 49 (1) ◽  
Author(s):  
Hui Yang ◽  
Tongbin Zhu ◽  
Farzaneh Garousi ◽  
Qiang Li ◽  
Jianhua Cao

Understanding the controlling factors of soil organic carbon isotope (δ13CSOC) change and the vegetation succession process is crucial to guide ecological restoration and agricultural cultivation in karst rocky desertification region. However, the information about the combination of C3 and C4 plant distribution and rocky desertification remains unknown. Soils from different landforms, including basin, slope, and plateau, were sampled to investigate the spatial variance of the δ13CSOC distribution characteristics. The contribution of C3 and C4 plant species for δ13CSOC under the different rocky desertification grades (LRD: light rocky desertification; MRD: moderate rocky desertification; and SRD: severe rocky desertification) in Mengzi karst graben basin of Southwest (SW) China was also discussed. The δ13CSOC  value decreased with the increase of altitude from basin, slope to plateau. At the same landform, different rocky desertification grades had no significant effect on the δ13CSOC in slope and plateau. Nevertheless, there were significant differences of δ13CSOC C between LRD and SRD in the basin. The C4 plants account for more than 70% in the basin and slope, while C3 plants account for more than 70% in the plateau. This may be due to the long-term cultivation of corn in the historical period in the basin and slope. However, the plateau area is not suitable for the growth of C4 plants such as corn due to the cold climate. In addition, in the same landform, with the aggravation of rocky desertification, the proportion of C4 plants for δ13CSOC increased with the proportion of C3 plants decreased. With the aggravation of rocky desertification, the composition of vegetation species changed from arbour (C3 plants) to small shrubs and herbs (C4 plants).


Sign in / Sign up

Export Citation Format

Share Document