scholarly journals Spatial Variability of Soil Phosphorus and Potassium and Its Influencing Factors in the Fragile Red Beds Ecosystem in Southern China

Author(s):  
Ping Yan ◽  
Kairong Lin ◽  
Chenxi Yu ◽  
Xinjun Tu
2021 ◽  
Vol 10 (6) ◽  
pp. 366
Author(s):  
Ping Yan ◽  
Kairong Lin ◽  
Yiren Wang ◽  
Xinjun Tu ◽  
Chunmei Bai ◽  
...  

Understanding the spatial variability of soil organic matter (SOM) is crucial for implementing precise land degradation control and fertilization to improve crop productivity. Studying spatial variability provides a scientific basis for precision fertilization and land degradation control. In this study, geostatistics and classical statistical methods were used to analyze the spatial variability of SOM and its influencing factors under various degrees of land degradation in the red bed area of southern China. The results demonstrate a declining trend for SOM content with increasing land degradation. The SOM content differs profoundly under different land degradation degrees. The coefficient of variation ranges from 13.61% for extreme land degradation to 8.98% for mild land degradation, 7.96% for moderate land degradation, and 5.64% for severe land degradation. A significant positive correlation is displayed between the altitude and the SOM (p < 0.01) under mild and moderate land degradation conditions. Bulk density and pH value have a significant negative correlation with SOM (p < 0.01). It can be observed that terrain factors, as well as physical and chemical soil parameters, have a great influence on SOM.


2013 ◽  
Vol 21 (8) ◽  
pp. 992-997
Author(s):  
Kun MA ◽  
Cheng LI ◽  
Fan XIAO ◽  
Sheng-Dong FENG ◽  
Zhi-Xin YANG

2021 ◽  
Author(s):  
Xiangdong Li ◽  
Tong Liu ◽  
Chunlei Zhao ◽  
Ming’an Shao ◽  
Jiong Cheng

2003 ◽  
Vol 60 (3) ◽  
pp. 559-564 ◽  
Author(s):  
Edemar Joaquim Corazza ◽  
Michel Brossard ◽  
Takashi MuraokaI ◽  
Maurício Antonio Coelho Filho

Studies on soil phosphorus (P) of low productivity cultivated pastures in Cerrado (Brazilian Savanna) areas and surveys on other possible problems related to P are scarce. The spatial variability of soil phosphorus content of a Rhodic Ferralsol was studied in a low productivity pasture of Brachiaria brizantha (BB) grown for 10 years, without fertilizer application, in an experimental area at Planaltina (GO), Brazil. Soil samplings were performed on a regular grid of 10 by 10 meters, with 98 sampling points before (between tussocks and under tussocks) and after the establishment of the experiment (after fertilizing). On the same grid, forage plants were collected and separated into fractions for N and P content analyses. Soil available phosphate was determined by the resin method (Pr) and complemented by the 32P isotopic exchange kinetics analysis. Descriptive statistical and geostatistical analyses were utilized to describe the spatial variability. The Pr content on soil samples under tussocks presented mean and median values 45% larger than in soil samples taken between tussocks. The higher variation is probably related to the greater concentration of BB roots, soil organic matter content and soil P recycled through the plants tussocks. The spatial variability of Pr in this soil was high especially after fertilizer application. This variable did not present spatial dependence for the regular 10 m sampling. The generated knowledge on P variability of soils under low productivity cultivated pastures revealed problems related to the sampling methodology traditionally utilized and to P application.


Land ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Xiaofang Huang ◽  
Lirong Lin ◽  
Shuwen Ding ◽  
Zhengchao Tian ◽  
Xinyuan Zhu ◽  
...  

Soil erodibility K factor is an important parameter for evaluating soil erosion vulnerability and is required for soil erosion prediction models. It is also necessary for soil and water conservation management. In this study, we investigated the spatial variability characteristics of soil erodibility K factor in a watershed (Changyan watershed with an area of 8.59 km2) of Enshi, southwest of Hubei, China, and evaluated its influencing factors. The soil K values were determined by the EPIC model using the soil survey data across the watershed. Spatial K value prediction was conducted by regression-kriging using geographic data. We also assessed the effects of soil type, land use, and topography on the K value variations. The results showed that soil erodibility K values varied between 0.039–0.052 t·hm2·h/(hm2·MJ·mm) in the watershed with a block-like structure of spatial distribution. The soil erodibility, soil texture, and organic matter content all showed positive spatial autocorrelation. The spatial variability of the K value was related to soil type, land use, and topography. The calcareous soil had the greatest K value on average, followed by the paddy soil, the yellow-brown soil (an alfisol), the purple soil (an inceptisol), and the fluvo-aquic soil (an entisol). The soil K factor showed a negative correlation with the sand content but was positively related to soil silt and clay contents. Forest soils had a greater ability to resist to erosion compared to the cultivated soils. The soil K values increased with increasing slope and showed a decreasing trend with increasing altitude.


Biotropica ◽  
2011 ◽  
Vol 44 (3) ◽  
pp. 302-311 ◽  
Author(s):  
Xiankai Lu ◽  
Jiangming Mo ◽  
Frank S. Gilliam ◽  
Hua Fang ◽  
Feifei Zhu ◽  
...  

2019 ◽  
Vol 30 (14) ◽  
pp. 1655-1666 ◽  
Author(s):  
Xiankun Li ◽  
Yanan Li ◽  
Shouzhang Peng ◽  
Yunming Chen ◽  
Yang Cao

Sign in / Sign up

Export Citation Format

Share Document