Mendel's Peas & the Nature of the Gene: Genes Code for Proteins & Proteins Determine Phenotype

2011 ◽  
Vol 73 (7) ◽  
pp. 382-387 ◽  
Author(s):  
Susan Offner

We are beginning to understand the biochemical nature of the genes that Gregor Mendel studied in his classic experiments with garden peas. This paper shows where Mendel's genes are located on the pea chromosome map, discusses the mutations involved in some of these genes, and shows how they can be used to teach classical genetics and the nature of the gene.

2021 ◽  
Vol 113 (1) ◽  
pp. 107-135
Author(s):  
Bert Leuridan

Abstract Gregor Mendel, Thomas Hunt Morgan and experiments in classical geneticsIn the middle of the 19th century, Gregor Mendel performed a series of crosses with pea plants to investigate how hybrids are formed. Decades later, Thomas Hunt Morgan finalized the theory of classical genetics. An important aspect of Mendel’s and Morgan’s scientific approach is that they worked in a systematic, experimental fashion. But how did these experiments proceed? What is the relation between these experiments and Mendel’s and Morgan’s explanatory theories? What was their evidential value? Using present-day insights in the nature of experimentation I will show that the answer to these questions is fascinating but not obvious. Crossings in classical genetics lacked a crucial feature of traditional experiments for causal discovery: manipulation of the purported causes. Hence they were not traditional, ‘manipulative’ experiments, but ‘selective experiments’.


Author(s):  
Samir Okasha

There is no satisfactory one-line answer to the question ‘what exactly is a gene?’. The reasons why a precise definition is elusive are particularly interesting, and raise a number of philosophical subtleties. ‘Genes’ delves briefly into the history of genetics in order to understand them. It first looks at the work of Gregor Mendel in the 1860s and then the era of classical genetics in the 1920s and 1930s. It then moves on to molecular genetics, which came to fruition in the 1950s. How does the gene of Mendelian or classical genetics relate to the gene of molecular genetics? This question has long occupied philosophers of biology.


2021 ◽  
pp. 37-43
Author(s):  
Thomas E. Schindler

This chapter reviews the research that set the stage for Joshua Lederberg’s surprising discovery of bacterial conjugation. While the foundational research of Gregor Mendel and his principles of inheritance had been effectively combined with Darwinian evolution, producing the Modern Synthesis in the mid-forties, bacteria did not fit into this grand synthesis. Most biologists believed that bacteria were too primitive to have real genes. But Delbruck, Hershey and Luria organized the Phage School, leading a novel approach to discovering the molecular biology of the gene by studying bacteriophages. Microbiologists like Tracy Sonneborn and Carl Lindegren turned to alternative microorganisms—protists, fungi, and yeast—to develop new model systems that offered advantages over the classical genetics organisms of animals and plants. The research of Edward Tatum and Jacques Monod indicated that mutations seemed to explain variation in bacteria. For many years, however, bacteriologists had known that bacteria reproduced by fission. The lack of any genetic hybridization seemed to argue against using bacteria to study basic genetic processes.


Genetics ◽  
1996 ◽  
Vol 143 (1) ◽  
pp. 517-529
Author(s):  
Kuldeep Singh ◽  
D S Multani ◽  
Gurdev S Khush

Abstract Secondary trisomics and telotrisomics representing the 12 chromosomes of rice were isolated from the progenies of primary trisomics. A large population of each primary trisomic was grown. Plants showing variation in gross morphology compared to the primary trisomics and disomic sibs were selected and analyzed cytologically at diakinesis and pachytene. Secondary trisomics for both arms of chromosomes 1, 2, 6, 7 and 11 and for one arm of chromosomes 4, 5, 8, 9 and 12 were identified. Telotrisomics for short arm of chromosomes 1, 8, 9 and 10 and for long arms of chromosomes 2, 3 and 5 were isolated. These secondary and telotrisomics were characterized morphologically and for breeding behavior. Secondary trisomics 2n + 1S · 1S, 2n + 1L · 1L, 2n + 2S · 2S, 2n + 2L · 2L, 2n + 6S · 6S, 2n + 6L · 6L and 2n + 7L · 7L are highly sterile, and 2n + 1L · 1L, 2n + 2L · 2L and 2n + 7L · 7L do not set any seed even upon backcrossing. Telotrisomics are fertile and vigorous. Genetic segregation of 43 marker genes was studied in the F2 or backcross progenies. On the basis of segregation data, these genes were delimited to specific chromosome arms. Correct orientation of 10 linkage groups was determined and centromere positions on nine linkage groups were approximated. A revised linkage map of rice is presented.


Author(s):  
Wayne Powell ◽  
Robbie Waugh ◽  
John Bradshaw ◽  
Joanne Russell ◽  
Luke Ramsay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document