scholarly journals Groundwater Recharge for a Regional Water Bank

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Michael Kiparsky ◽  
Kathleen Miller ◽  
Phoebe Goulden ◽  
Anita Milman ◽  
Dave Owen

The Kern Water Bank is a semi-private groundwater bank operated by the Kern Water Bank Authority in Kern County, CA. The bank stores water from the State Water Project (SWP), Central Valley Project (CVP), and the Kern River. It is massive in scale, covering over 20,000 acres, with approximately 2.5 million acre feet diverted to the bank since 1995. The bank stores water on behalf of its member water agencies, which include both public and private water entities mainly focusing on agricultural use, along with a small number of municipal and residential customers. Water is withdrawn by the member agencies during droughts when surface water supplies from the SWP, CVP, and Kern River are insufficient to meet local demand or when member agencies elect to sell their stored water to outside third parties. In addition, the overlying land and infiltration ponds serve as habitat for some endangered and threatened species. Legal and political controversy surrounded the bank’s creation, but its unique suite of physical assets, creative enabling agreements, and clear operational rules and incentives have enabled it to use managed aquifer recharge to make significant contributions to the flexibility of regional and statewide water systems over decades of operations.

Author(s):  
Lenny Grimaldo ◽  
William Smith ◽  
Matthew Nobriga

Managing endangered species is challenging when increased rarity leads to an inability to detect their responses to environmental conditions. In the San Francisco Estuary, the state and federally listed Delta Smelt (Hypomesus transpacificus) has declined to record low numbers, elevating concern over entrainment at the State Water Project (SWP) and Central Valley Project (CVP) water export facilities. The objective of this study was to: (1) revisit previous work on factors that affect adult Delta Smelt collected at the SWP and CVP fish collection facilities using updated conceptual models and a new statistical approach; and (2) to determine factors that affect salvage at time-scales of interest to management. Boosted Regression Tree (BRT) models were applied to salvage data at the SWP and CVP, aggregated into two response categories: a “first flush” response that represented daily salvage from the start of the entrainment window to the 50% midpoint of observed salvage, and a “seasonal” response that included daily salvage from the entire entrainment window. Precipitation, sub-adult abundance, Yolo Bypass flow, and exports best explained first flush salvage at both the SWP and CVP. The seasonal models included a similar set of influential variables, but the relative influence of precipitation was lower compared to the first flush models., Yolo Bypass flow was more influential for seasonal salvage at the SWP, compared to the CVP; Old and Middle River flow was more influential for seasonal salvage at the CVP. Although the rank of variable importance that explains salvage differed slightly between first flush and seasonal time-scales, this study suggests that salvage is most influenced by hydrodynamics, water quality, and population abundance. The application of BRT models to predict salvage is limited, because salvage has been low since federal protections were implemented in 2008. Forecast models that integrate real-time variables with fish behavior models may improve Delta Smelt management.


Author(s):  
Lenny Grimaldo ◽  
William Smith ◽  
Matthew Nobriga

Managing endangered species is challenging when increased rarity leads to an inability to detect their responses to environmental conditions. In the San Francisco Estuary, the state and federally listed Delta Smelt (Hypomesus transpacificus) has declined to record low numbers, elevating concern over entrainment at the State Water Project (SWP) and Central Valley Project (CVP) water export facilities. The objective of this study was to: (1) revisit previous work on factors that affect adult Delta Smelt collected at the SWP and CVP fish collection facilities using updated conceptual models and a new statistical approach; and (2) to determine factors that affect salvage at time-scales of interest to management. Boosted Regression Tree (BRT) models were applied to salvage data at the SWP and CVP, aggregated into two response categories: a “first flush” response that represented daily salvage from the start of the entrainment window to the 50% midpoint of observed salvage, and a “seasonal” response that included daily salvage from the entire entrainment window. Precipitation, sub-adult abundance, Yolo Bypass flow, and exports best explained first flush salvage at both the SWP and CVP. The seasonal models included a similar set of influential variables, but the relative influence of precipitation was lower compared to the first flush models., Yolo Bypass flow was more influential for seasonal salvage at the SWP, compared to the CVP; Old and Middle River flow was more influential for seasonal salvage at the CVP. Although the rank of variable importance that explains salvage differed slightly between first flush and seasonal time-scales, this study suggests that salvage is most influenced by hydrodynamics, water quality, and population abundance. The application of BRT models to predict salvage is limited, because salvage has been low since federal protections were implemented in 2008. Forecast models that integrate real-time variables with fish behavior models may improve Delta Smelt management.


2001 ◽  
Vol 43 (12) ◽  
pp. 67-71 ◽  
Author(s):  
I. T. Miettinen ◽  
O. Zacheus ◽  
C-H. von Bonsdorff ◽  
T. Vartiainen

Fourteen waterborne epidemics occurred in Finland during 1998-1999. About 7,300 illness cases were registered in these outbreaks. All except one of the waterborne epidemics were associated with undisinfected groundwaters. An equal number of waterborne epidemics occurred in public and private water systems, but most cases of illness occurred in public water systems. The three largest epidemics comprised 6,700 illness cases. Insufficient purification treatment unable to remove Norwalk-like viruses caused the only waterborne epidemic in a surface water plant. The main reasons for groundwater outbreaks were floods and surface runoffs which contaminated water. Norwalk-like viruses caused eight and Campylobacter three of the outbreaks. In two cases the epidemic ceased by the exhaustion of susceptible persons in the exposed community but in most cases it was terminated by changing the water source, boiling the drinking water, and starting chlorination.


Author(s):  
Gonzalo Castillo ◽  
◽  
Jerry Morinaka ◽  
Joan Lindberg ◽  
Bradd Baskerville-Bridges ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document