A Comparative Analysis of the Governance and Use of Residual Dried Blood Spots from State Newborn Screening Programs and Neonatal Biobanks

2013 ◽  
Vol 8 (3) ◽  
pp. 22-33 ◽  
Author(s):  
Elicia D. Preslan ◽  
Debra J. H. Mathews
2015 ◽  
Vol 38 (5) ◽  
pp. 923-929 ◽  
Author(s):  
Coleman T. Turgeon ◽  
Joseph J. Orsini ◽  
Karen A. Sanders ◽  
Mark J. Magera ◽  
Thomas J. Langan ◽  
...  

2006 ◽  
Vol 148 (5) ◽  
pp. 618-622 ◽  
Author(s):  
Richard S. Olney ◽  
Cynthia A. Moore ◽  
Jelili A. Ojodu ◽  
Mary Lou Lindegren ◽  
W. Harry Hannon

2001 ◽  
Vol 47 (8) ◽  
pp. 1378-1383 ◽  
Author(s):  
Kandiah Umapathysivam ◽  
John J Hopwood ◽  
Peter J Meikle

Abstract Background: Pompe disease is an autosomal recessive disorder of glycogen metabolism that is characterized by a deficiency of the lysosomal acid α-glucosidase. Enzyme replacement therapy for the infantile and juvenile forms of Pompe disease currently is undergoing clinical trials. Early diagnosis before the onset of irreversible pathology is thought to be critical for maximum efficacy of current and proposed therapies. In the absence of a family history, the presymptomatic detection of these disorders ideally can be achieved through a newborn-screening program. Currently, the clinical diagnosis of Pompe disease is confirmed by the virtual absence, in infantile onset, or a marked reduction, in juvenile and adult onset, of acid α-glucosidase activity in muscle biopsies and cultured fibroblasts. These assays are invasive and not suited to large-scale screening. Methods: A sensitive immune-capture enzyme activity assay for the measurement of acid α-glucosidase protein was developed and used to determine the activity of this enzyme in dried-blood spots from newborn and adult controls, Pompe-affected individuals, and obligate heterozygotes. Results: Pompe-affected individuals showed an almost total absence of acid α-glucosidase activity in blood spots. The assay showed a sensitivity and specificity of 100% for the identification of Pompe-affected individuals. Conclusions: The determination of acid α-glucosidase activity in dried-blood spots is a useful, noninvasive diagnostic assay for the identification of Pompe disease. With further validation, this procedure could be adapted for use with blood spots collected in newborn-screening programs.


2004 ◽  
Vol 32 (4) ◽  
pp. 741-748 ◽  
Author(s):  
Linda Kharaboyan ◽  
Denise Avard ◽  
Bartha Maria Knoppers

Though in existence for over thirty-five years, due to the increasing panoply of possible tests. Newborn screening programs are drawing public attention. Many jurisdictions have mandatory newborn screening programs for treatable disorders. Disorders are detected through tests on blood spots drawn from a newborn’s heel soon after birth and verified through a diagnostic test with follow-up. Unbeknownst to most parents, these blood spot cards are also stored thereafter. Indeed, while dried blood spots (DBSs) are primarily used for screening for health problems, experience demonstrates that they can be made useful in various contexts unrelated to screening.Newborn dried blood spots have taken on a new life as a result of developments in genetics and the increasing ability of bioinformatics to link DNA information with clinical data. Additionally, storage and secondary uses have been documented to occur without parental consent.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Neta Simon ◽  
Jaclyn Shallat ◽  
Corey Williams Wietzikoski ◽  
Whitney E Harrington

Abstract Dried blood spots (DBS) are widely utilized as part of universal newborn screening and as a means of transporting samples from field sites. We use DBS from African field sites to assess for rare maternal-fetal cell exchange during pregnancy known as microchimerism. We aimed to develop a protocol to maximize the quantity of high-quality genomic DNA (gDNA) extracted from DBS. The total gDNA yield obtained from control DBS utilizing a Qiagen-based protocol and a Chelex® 100 resin-based protocol was first compared. Variations of the Chelex® protocol were subsequently tested to develop an optimized protocol. The gDNA was quantified by qPCR targeting the human beta-globin gene. DNA yield for a given experimental condition was normalized to a Chelex® control performed on the same day, and the total yields were compared using a Student’s t-test. The control Chelex® protocol yielded 590% more DNA than the QIAamp® DNA Blood Mini Kit . The absolute efficiency of the control Chelex® protocol was 54%, compared to an absolute efficiency of 9% for the QIAamp® DNA Blood Mini Kit. Modification of the Chelex® protocol to include a second heat precipitation from the same DBS increased the gDNA yield by 29% (P < 0.001). Our optimized protocol including this modification increased the absolute efficiency of extraction to 68%. The gDNA extracted using the Chelex® protocol was stable through repeated freeze–thaw cycles. In a mock microchimerism experiment, rare donor alleles at a frequency of 10 in 100 000 could be identified in gDNA from DBS extracted using the optimized Chelex® protocol. Our findings may be of significance for a diverse range of applications that utilize DBS and require high-quality DNA, including newborn screening programs, pathogen and drug resistance screening from remote field sites, forensics, and rare allele detection.


Author(s):  
Bárbara Araújo Marques ◽  
Ericka Vianna Machado Carellos ◽  
Vânia Maria Novato Silva ◽  
Fernando Henrique Pereira ◽  
Maria Regina Lage Guerra ◽  
...  

Abstract Objective Most prenatal screening programs for toxoplasmosis use immunoassays in serum samples of pregnant women. Few studies assess the accuracy of screening tests in dried blood spots, which are of easy collection, storage, and transportation. The goals of the present study are to determine the performance and evaluate the agreement between an immunoassay of dried blood spots and a reference test in the serum of pregnant women from a population-based prenatal screening program for toxoplasmosis in Brazil. Methods A cross-sectional study was performed to compare the immunoassays Imunoscreen Toxoplasmose IgM and Imunoscreen Toxoplasmose IgG (Mbiolog Diagnósticos, Ltda., Contagem, Minas Gerais, Brazil)in dried blood spots with the enzyme-linked fluorescent assay (ELFA, BioMérieux S.A., Lyon, France) reference standard in the serum of pregnant women from Minas Gerais Congenital Toxoplasmosis Control Program. Results The dried blood spot test was able to discriminate positive and negative results of pregnant women when compared with the reference test, with an accuracy of 98.2% for immunoglobulin G (IgG), and of 95.8% for immunoglobulin M (IgM). Conclusion Dried blood samples are easy to collect, store, and transport, and they have a good performance, making this a promising method for prenatal toxoplasmosis screening programs in countries with continental dimensions, limited resources, and a high prevalence of toxoplasmosis, as is the case of Brazil.


2021 ◽  
Vol 26 ◽  
pp. 100720
Author(s):  
Archana Natarajan ◽  
Rita Christopher ◽  
Shruti V. Palakuzhiyil ◽  
Sadanandavalli Retnaswami Chandra

2007 ◽  
Vol 53 (8) ◽  
pp. 1401-1407 ◽  
Author(s):  
Malin Ida Linnea Sjöholm ◽  
Joakim Dillner ◽  
Joyce Carlson

Abstract Background: Dried blood spots (DBS) are a convenient and inexpensive method for biobanking. Although many countries have established population-based DBS biobanks from neonatal screening programs, the quality and usefulness of DNA from DBS have not been extensively assessed. Methods: We compared 4 common DNA extraction methods (Qiagen, EZNA, Chelex 100, and alkaline lysis) in a pilot study using fresh DBS with known lymphocyte count. We assessed suitability for multiple displacement amplification (MDA) and subsequent single-nucleotide polymorphism (SNP) analyses. We selected the EZNA method for DNA extraction from archival samples up to 27 years old, stored at room temperature or −20 °C, and SNP analyses were performed after MDA. Results: Extraction using alkaline lysis failed in most tests, and Chelex 100 was unsuccessful in real-time PCR, whereas the EZNA and Qiagen methods were successful by all evaluated quality indices. DNA extraction by EZNA, MDA, and SNP analyses were successful for the archival samples stored at −20 °C. Conclusion: Routine protocols for evaluation of the quality and functional integrity of DNA based on DNA yield, DNA size, and quantification of amplifiable DNA allow use of sufficient template for MDA and successful SNP analyses from both primary DBS extract and MDA product. A single 3-mm disc can yield sufficient DNA for several thousand SNP analyses. DNA from DBS is thus suitable for genetic epidemiology studies.


Sign in / Sign up

Export Citation Format

Share Document