scholarly journals Alpha cell function in type 1 diabetes

2014 ◽  
Vol 14 (2) ◽  
pp. 45 ◽  
Author(s):  
David Simon Hughes ◽  
Parth Narendran
Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 1917-P
Author(s):  
LINGYU ZHANG ◽  
YUWEN SHI ◽  
YITING HUANG ◽  
QIZHEN HU ◽  
YAO QIN ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1940-P
Author(s):  
NOBUYUKI TAKAHASHI ◽  
DAISUKE CHUJO ◽  
HIROSHI KAJIO ◽  
KOHJIRO UEKI

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 235-LB
Author(s):  
LINGYU ZHANG ◽  
YUWEN SHI ◽  
JING WANG ◽  
XING WANG ◽  
YAO QIN ◽  
...  

2021 ◽  
Author(s):  
Nicolai Doliba ◽  
Andrea Rozo ◽  
Jeffrey Roman ◽  
Wei Qin ◽  
Daniel Traum ◽  
...  

Multiple islet autoantibodies (AAb) predict type 1 diabetes (T1D) and hyperglycemia within 10 years. By contrast, T1D develops in just ~15% of single AAb+ (generally against glutamic acid decarboxylase, GADA+) individuals; hence the single GADA+ state may represent an early stage of T1D amenable to interventions. Here, we functionally, histologically, and molecularly phenotype human islets from non-diabetic, GADA+ and T1D donors. Similar to the few remaining beta cells in T1D islets, GADA+ donor islets demonstrated a preserved insulin secretory response. By contrast, alpha cell glucagon secretion was dysregulated in both T1D and GADA+ islets with impaired glucose suppression of glucagon secretion. Single cell RNA sequencing (scRNASeq) of GADA+ alpha cells revealed distinct abnormalities in glycolysis and oxidative phosphorylation pathways and a marked downregulation of PKIB, providing a molecular basis for the loss of glucose suppression and the increased effect of IBMX observed in GADA+ donor islets. The striking observation of a distinct early defect in alpha cell function that precedes beta cell loss in T1D suggests that not only overt disease, but also the progression to T1D itself, is bihormonal in nature.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 315-LB
Author(s):  
XIAOQING DAI ◽  
JOAN CAMUNAS SOLER ◽  
LINFORD BRIANT ◽  
ALIYA F. SPIGELMAN ◽  
YAN HANG ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 294-OR
Author(s):  
GUY S. TAYLOR ◽  
KIERAN SMITH ◽  
JADINE SCRAGG ◽  
AYAT BASHIR ◽  
RICHARD A. ORAM ◽  
...  

2020 ◽  
Vol 21 (5) ◽  
pp. 1598 ◽  
Author(s):  
Johnny Ludvigsson

Autoantigen treatment has been tried for the prevention of type 1 diabetes (T1D) and to preserve residual beta-cell function in patients with a recent onset of the disease. In experimental animal models, efficacy was good, but was insufficient in human subjects. Besides the possible minor efficacy of peroral insulin in high-risk individuals to prevent T1D, autoantigen prevention trials have failed. Other studies on autoantigen prevention and intervention at diagnosis are ongoing. One problem is to select autoantigen/s; others are dose and route. Oral administration may be improved by using different vehicles. Proinsulin peptide therapy in patients with T1D has shown possible minor efficacy. In patients with newly diagnosed T1D, subcutaneous injection of glutamic acid decarboxylase (GAD) bound to alum hydroxide (GAD-alum) can likely preserve beta-cell function, but the therapeutic effect needs to be improved. Intra-lymphatic administration may be a better alternative than subcutaneous administration, and combination therapy might improve efficacy. This review elucidates some actual problems of autoantigen therapy in the prevention and/or early intervention of type 1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document