scholarly journals Finite Element Modelling and Updating of Welded Thin-Walled Beam

Author(s):  
M. S. M. Fouzi ◽  
K. M. Jelani ◽  
N. A. Nazri ◽  
Mohd Shahrir Mohd Sani

This article concentrates on the finite element (FE) modelling approach to model welded thin-walled beam and the adoption of model updating technique to enhance the dynamic characteristic of the FE model. Four different types of element connectors which are RBE2, CBAR, CBEAM and CELAS format are used to construct the FE model of welded structure. Normal mode analysis is performed using finite element analysis (FEA) software, MSC Patran/Nastran to extract the modal parameters (natural frequency and mode shape) of the FE model. The precision of predicted modal parameters obtained from the four models of welded structure are compared with the measured counterparts. The dynamic characteristics of a measured counterpart is obtained through experimental modal analysis (EMA) using impact hammer method with roving accelerometer under free-free boundary conditions. In correlation process, the CBAR model has been selected for updating purposes due to its accuracy in prediction with measured counterparts and contains updating parameters compared to the others. Ahead of the updating process, sensitivity analysis is made to select the most sensitive parameter for updating purpose. Optimization algorithm in MSC Nastran is used in FE model updating process. As a result, the discrepancy between EMA and FEA is managed to be reduced. It shows the percentage of error for updated CBAR model shrinks from 7.85 % to 2.07 % when compared with measured counterpart. Hence, it is found that using FE model updating process provides an efficient and systemic way to perform a feasible FE model in replicating the real structure.

Author(s):  
N A Husain ◽  
H H Khodaparast ◽  
A Snaylam ◽  
S James ◽  
G Dearden ◽  
...  

Spot welds made by resistance spot welding are used extensively in automotive engineering. However, owing to increasing demands in the use of advanced and lightweight materials, laser welding has become a popular alternative for producing spot welds. Because of the complexity and uncertainties of laser welds and thus formed structures, the finite-element (FE) modelling of the welds for dynamic analysis is a research issue. This article first outlines some of the existing modelling works of spot welds. Then, a hat-plate structure used for this study is described and its FE representations are explained. The welds are modelled using CWELD elements in MSC/NASTRAN and their feasibility for representing laser spot welds is investigated. Numerical results for the initial FE model differ considerably from that of their experimental counterparts; hence, a model updating procedure is carried out to minimize the discrepancy between the two sets of results. In this work, the updating is posed as an optimization problem and is performed using the structural optimization capability (SOL 200) in MSC/NASTRAN. Two stages of updating are conducted, that is (a) updating FE models of individual components and (b) updating an FE model of the welded structure. Crucial steps in updating are explained. It is found that by selecting the right updating parameters, the CWELD element can be used to represent laser spot welds with good accuracy.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


Author(s):  
D. V. Nehete ◽  
S. V. Modak ◽  
K. Gupta

Finite element (FE) model updating is now recognized as an effective approach to reduce modeling inaccuracies present in an FE model. FE model updating has been researched and studied well for updating FE models of purely structural dynamic systems. However there exists another class of systems known as vibro-acoustics in which acoustic response is generated in a medium due to the vibration of enclosing structure. Such systems are commonly found in aerospace, automotive and other transportation applications. Vibro-acoustic FE modeling is essential for sound acoustic design of these systems. Vibro-acoustic system, in contrast to purely structural system, has not received sufficient attention from FE model updating perspective and hence forms the topic of present paper. In the present paper, a method for finite element model updating of coupled structural acoustic model, constituted as a problem of constrained optimization, is proposed. An objective function quantifying error in the coupled natural frequencies and mode shapes is minimized to estimate the chosen uncertain parameters of the system. The effectiveness of the proposed method is validated through a numerical study on a 3D rectangular cavity attached to a flexible panel. The material property and the stiffness of joints between the panel and rectangular cavity are used as updating parameters. Robustness of the proposed method under presence of noise is investigated. It is seen that the method is not only able to obtain a close match between FE model and corresponding ‘measured’ vibro-acoustic characteristics but is also able to estimate the correction factors to the updating parameters with reasonable accuracy.


2018 ◽  
Vol 18 (08) ◽  
pp. 1840004 ◽  
Author(s):  
Tianyi Zhu ◽  
Wei Tian ◽  
Shun Weng ◽  
Hanbin Ge ◽  
Yong Xia ◽  
...  

An accurate finite element (FE) model is frequently used in damage detection, optimization design, reliability analysis, nonlinear analysis, and so forth. The FE model updating of large-scale structures is usually time-consuming or even impossible. This paper proposes a dynamic condensation approach for model updating of large-scale structures. The eigensolutions are calculated from a condensed eigenequation and the eigensensitivities are calculated without selection of additional master DOFs, which is helpful to improve the efficiency of FE model updating. The proposed model updating method is applied to an eight-storey frame and the Jun Shan Yangtze Bridge. By employing the dynamic condensation approach, the number of iterations for the eigensensitivities is gradually increased according to the model updating process, which contributes to accelerate the convergence of model updating.


2013 ◽  
Vol 540 ◽  
pp. 1-10
Author(s):  
Yang Liu ◽  
Zhan Lv ◽  
Hong Zhang

To develop an effective software for finite element (FE) model updating of bridges, the interface technology between VC++ and MATLAB was investigated firstly, and then a software for updating FE model of bridges, named Doctor for Bridges (version 1.0) was developed. Finally, a model ofconcrete-filled steel tube arch bridge was applied to verify the performance and effectiveness of the proposed software.


2021 ◽  
Vol 13 (3) ◽  
pp. 1474
Author(s):  
Jiawang Zhan ◽  
Chuang Wang ◽  
Zhiheng Fang

The condition of joints in steel truss bridges is critical to railway operational safety. The available methods for the quantitative assessment of different types of joint damage are, however, very limited. This paper numerically investigates the feasibility of using a probabilistic neural network (PNN) and a finite element (FE) model updating technique to assess the condition of joints in steel truss bridges. A two-step identification procedure is developed to achieve damage localization and severity assessment. A series of FE models with single or multiple damages are simulated to generate the training and testing data samples and validate the effectiveness of the proposed approach. The influence of noise on the identification accuracy is also evaluated. The results show that the change rate of modal curvature (CRMC) can be used as a damage-sensitive input of the PNN and the accuracy of preliminary damage localization can exceed 90% when suitable training patterns are utilized. Damaged members can be localized in the correct substructure even with noise contamination. The FE model updating method used can effectively quantify the joint deterioration severity and is robust to noise.


2011 ◽  
Vol 201-203 ◽  
pp. 2672-2678
Author(s):  
Miao Yi Deng ◽  
Fuen Li

A method for continuous box-girder bridge structure finite element (FE) model updating based on static-load testing is proposed. The procedure includes field static-load testing, FE modeling, FE model (parameter) updating, etc. Based on this procedure, the structure FE model updating for an expressway 5-span pre-stressed concrete continuous box-girder bridge is conducted. And the bridge structure static FE model, which is consistent with the static-load testing actual measure response, is gained. The updated FE model (parameter) is foundation of structural performance evaluation for the bridge.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jie Wu ◽  
Quansheng Yan ◽  
Shiping Huang ◽  
Chao Zou ◽  
Jintu Zhong ◽  
...  

Computational cost reduction and best model updating method seeking are the key issues during model updating for different kinds of bridges. This paper presents a combined method, Kriging model and Latin hypercube sampling method, for finite element (FE) model updating. For FE model updating, the Kriging model is serving as a surrogate model, and it is a linear unbiased minimum variance estimation to the known data in a region which have similar features. To predict the relationship between the structural parameters and responses, samples are preselected, and then Latin hypercube sampling (LHS) method is applied. To verify the proposed algorithm, a truss bridge and an arch bridge are analyzed. Compared to the predicted results obtained by using a genetic algorithm, the proposed method can reduce the computational time without losing the accuracy.


Author(s):  
V. Arora

An accurate finite element model of a structure is essential for predicting reliably its dynamic characteristics. Such a model can be used to predict the effects of structural modifications for dynamic design of the structure. These structural modifications may be imposed by design alterations for operating reasons. Most of the model updating techniques neglect damping and so these updated models can’t be used for accurate prediction of vibration amplitudes. This paper deals with the basic formulation of finite element model updating method having identified structural damping matrix, and its use for structural dynamic modifications. A case involving actual measured data for the case of F-shaped test structure, which resembles the skeleton of a drilling machine is used to evaluate the effectiveness of FE model updating method incorporating identified structural damping matrix for accurate prediction of the vibration levels and thus its use for structural dynamic modifications. Design modifications in terms of mass and stiffener modifications are introduced to evaluate the effectiveness updated model incorporating damping matrices for structural dynamic modifications. It has been concluded that the FE model updating incorporating identified structural damping matrix can be used for structural dynamic modifications with confidence.


Sign in / Sign up

Export Citation Format

Share Document