TEMPORAL RELATIONSHIP OF THE GROWTH HORMONE EFFECTS ON AMINO ACID TRANSPORT AND PROTEIN SYNTHESIS IN ISOLATED RAT DIAPHRAGM

1968 ◽  
Vol 57 (3_Suppl) ◽  
pp. S37-S48 ◽  
Author(s):  
Å. Hjalmarson

ABSTRACT Experiments were performed to study whether the influence of bovine growth hormone (GH) on the mebrane transport of labelled leucine and glycine in the isolated rat diaphragm was similar to that previously found for α-aminoisobutyric acid (Hjalmarson & Abrén 1967a, b). The relationship between the effects of GH on amino acid transport and protein synthesis was also studied. Addition of GH in vitro (25 μg/ml) to intact hemidiaphragms from hypophysectomized rats increased the accumulation of glycine in the intracellular water after 2 hours of incubation, while that of leucine was reduced. GH in vitro increased the incorporation rate into muscle protein of both glycine and leucine. An Intravenous (i. v.) injection of GH (10 μg) to hypophysectomized rats 60 min. before incubation increased the distribution ratio of leucine, while no significant effect was found on the incorporation into protein of this amino acid. On the other hand, an injection of GH (10 μg) 180 min. before incubation increased the in vitro incorporation of both leucine and glycine. This injection did not change the distribution ratio of glycine and that of leucine was significantly decreased. Repeated injections of GH (50 μg × 4 days) increased the incorporation of both glycine and leucine. This treatment also increased the accumulation of glycine after 2 hours of incubation, while no such effect was seen on the accumulation of leucine. In vitro addition of GH (25 μg/ml) did not significantly change the distribution ratio of glycine and leucine in diaphragms from hypophysectomized rats previously treated with GH. However, addition of GH in vitro to the diaphragms from these rats further increased the incorporation of glycine into protein. In addition, GH in vitro increased the accumulation of glycine also when the incorporation of this amino acid into protein was completely blocked by puromycin (500 μg/ml). The present results show that GH, at least in certain doses, may have a biphasic action on the membrane transport of normal amino acids. The results also indicate that GH may have separate effects on the membrane transport and the incorporation into protein of amino acids.

1959 ◽  
Vol 18 (4) ◽  
pp. 395-408 ◽  
Author(s):  
K. L. MANCHESTER ◽  
P. J. RANDLE ◽  
F. G. YOUNG

SUMMARY 1. The effect of hypophysectomy, or of adrenalectomy, and injection of pituitary growth hormone (GH) or of cortisol, on the uptake of glucose and the incorporation of glycine into protein by isolated rat diaphragm, and the effect of the addition of insulin in vitro on these processes, has been studied. 2. Both hypophysectomy and adrenalectomy raised the uptake of glucose by isolated diaphragm, while treatment of the intact or of the hypophysectomized rat with GH, or of the intact or of the adrenalectomized rat with cortisol, depressed it. Although hypophysectomy and adrenalectomy did not influence the additional glucose uptake induced by 200 mu./ml. of insulin in vitro, both these operations enhanced the effect of 0·1–1·0 mu./ml. of insulin on glucose uptake by diaphragm in vitro. Treatment of the rat with GH or cortisol diminished the rise in glucose uptake of diaphragm induced by 0·1–1·0 mu./ml. insulin. 3. Hypophysectomy depressed, and administration of GH to the intact or hypophysectomized rat raised, the incorporation of glycine into protein of the isolated diaphragm, but neither of these operations altered the magnitude of the stimulation of incorporation induced by 1·0 mu./ml. insulin. 4. Adrenalectomy raised, and administration of cortisol to the intact or adrenalectomized rat depressed, the incorporation of glycine into protein of the isolated diaphragm; adrenalectomy enhanced, the injection of cortisol diminished, the effect of 1·0 mu./ml. insulin on these processes. 5. The possibility that GH directs insulin towards the stimulation of protein synthesis, in part by restraining the action of insulin on carbohydrate metabolism, is discussed.


1970 ◽  
Vol 119 (4) ◽  
pp. 629-634 ◽  
Author(s):  
M. J. Clemens ◽  
A. Korner

1. Incorporation of [14C]leucine into protein in rat liver slices, incubated in vitro, increased as the concentration of unlabelled amino acids in the incubation medium was raised. A plateau of incorporation was reached when the amino acid concentration was 6 times that present in rat plasma. Labelling of RNA by [3H]orotic acid was not stimulated by increased amino acid concentration in the incubation medium. 2. When amino acids were absent from the medium, or present at the normal plasma concentrations, no effect of added growth hormone on labelling of protein or RNA by precursor was observed. 3. When amino acids were present in the medium at 6 times the normal plasma concentrations addition of growth hormone stimulated incorporation of the appropriate labelled precursor into protein of liver slices from normal rats by 31%, and into RNA by 22%. A significant effect was seen at a hormone concentration as low as 10ng/ml. 4. Under the same conditions addition of growth hormone also stimulated protein labelling in liver slices from hypophysectomized rats. Tissue from hypophysectomized rats previously treated with growth hormone did not respond to growth hormone in vitro. 5. No effect of the hormone on the rate or extent of uptake of radioactive precursors into acid-soluble pools was found. 6. Cycloheximide completely abolished the hormone-induced increment in labelling of both RNA and protein. 7. It was concluded that, in the presence of an abundant amino acid supply, growth hormone can stimulate the synthesis of protein in rat liver slices by a mechanism that is more sensitive to cycloheximide than is the basal protein synthesis. The stimulation of RNA labelling observed in the presence of growth hormone may be a secondary consequence of the hormonal effect on protein synthesis. 8. The mechanism of action of growth hormone on liver protein synthesis in vitro was concluded to be similar to its mechanism of action in vivo.


1967 ◽  
Vol 54 (4) ◽  
pp. 645-662 ◽  
Author(s):  
Å. Hjalmarson ◽  
K. Ahrén

ABSTRACT The effect of growth hormone (GH) in vitro on the rate of intracellular accumulation of the non-utilizable amino acid α-aminoisobutyric acid (AIB) was studied in the intact rat diaphragm preparation. Bovine or ovine GH (25 μg/ml incubation medium) markedly stimulated the accumulation of AIB-14C by diaphragms from hypophysectomized rats, while there was no or only a very slight effect on diaphragms from normal rats. In diaphragms from rats with the pituitary gland autotransplanted to the kidney capsule GH in vitro stimulated the accumulation of AIB-14C significantly more than in diaphragms from normal rats but significantly less than in diaphragms from hypophysectomized rats. Injections of GH intramuscularly for 4 days to hypophysectomized rats made the diaphragms from these rats less sensitive or completely insensitive to GH in vitro. These results indicate strongly that the relative insensitivity to GH in vitro of diaphragms from normal rats is due to the fact that the muscle tissues from these rats has been exposed to the endogenously secreted GH. The results show that GH can influence the accumulation of AIB-14C in the isolated rat diaphragm in two different ways giving an acute or »stimulatory« effect and a late or »inhibitory« effect, and that it seems to be a time-relationship between these two effects of the hormone.


1976 ◽  
Vol 35 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Turner ◽  
P. J. Reeds ◽  
K. A. Munday

1. Net amino acid uptake, and incorporation into protein have been measured in vitro in the presence and absence of porcine growth hormone (GH) in muscle from intact rabbits fed for 5 d on low-protein (LP), protein-free (PF) or control diets.2. In muscle from control and LP animals GH had no effect on the net amino acid uptake but stimulated amino acid incorporation into protein, although this response was less in LP animals than in control animals.3. In muscle from PF animals, GH stimulated both amino acid incorporation into protein and the net amino acid uptake, a type of response which also occurs in hypophysectomized animals. The magnitude of the effect of GH on the incorporation of amino acids into protein was reduced in muscle from PF animals.4. The effect of GH on the net amino acid uptake in PF animals was completely blocked by cycloheximide; the uptake effect of GH in these animals was dependent therefore on de novo protein synthesis.5. It is proposed that in the adult the role of growth hormone in protein metabolism is to sustain cellular protein synthesis when there is a decrease in the level of substrate amino acids, similar to that which occurs during a short-term fast or when the dietary protein intake is inadequate.


1975 ◽  
Vol 146 (1) ◽  
pp. 141-155 ◽  
Author(s):  
K N Jeejeebhoy ◽  
J Ho ◽  
G R Greenberg ◽  
M J Phillips ◽  
A Bruce-Robertson ◽  
...  

A system using hepatocyte suspensions in vitro was developed for studying the synthesis of albumin, fibrinogen and transferrin. Conditions for optimum survival of the hepatocyte and for synthesis of these plasma proteins were defined for this system. These conditions included the use of horse serum (17.5 percent, v/v, heat-inactivated), an enriched medium (Waymouth's MB 752/1), an O2 tension of between 18.7 times 10(3) and 26.7 times 10(3) Pa and constant stirring. Albumin, fibrinogen and transferrin synthesis rates were obtained of 0.32 p 0.094(10), 0.12 p 0.030(11) and 0.097 p 0.017(10) [mean p S.D. (n)]mg/h per g of hepatocytes respectively. These rates were maintained for the first 12h of study and synthesis continued at a diminished rate up to 48h. The synthesis of albumin was decreased in a medium containing less amino acids and glucose, but that of fibrinogen was substantially unaffected. ATP concentrations up to 12h and RNA/DNA ratios up to 24h were comparable with values in vivo. The ability to study cells up to 48h permitted us to find that the addition of a mixture of hormones consisting of glucagon, cortisol, tri-iodothyronine and growth hormone enhanced fibrinogen synthesis. Addition of insulin to the above mixture resulted in increased synthesis for albumin and transferrin but not for fibrinogen.


1968 ◽  
Vol 57 (3_Suppl) ◽  
pp. S19-S35 ◽  
Author(s):  
Å. Hjalmarson

ABSTRACT In vitro addition of bovine growth hormone (GH) to intact hemidiaphragms from hypophysectomized rats has previously been found to produce both an early stimulatory effect lasting for 2—3 hours and a subsequent late inhibitory effect during which the muscle is insensitive to further addition of GH (Hjalmarson 1968). These effects on the accumulation rate of α-aminoisobutyric acid (AIB) and D-xylose have been further studied. In presence of actinomycin D (20 μg/ml) or puromycin (100 μg/ml) the duration of the stimulatory effect of GH (25 μg/ml) was prolonged to last for at least 4—5 hours and the late inhibitory effect was prevented. Similar results were obtained when glucose-free incubation medium was used. Preincubation of the diaphragm at different glucose concentrations (0—5 mg/ml) for 3 hours did not change the GH sensitivity. Addition of insulin at start of incubation could not prevent GH from inducing its late inhibitory effect, while dexamethasone seemed to potentiate this effect of GH. Furthermore, adrenaline was found to decrease the uptake of AIB-14C and D-xylose-14C in the diaphragm, but not to change the sensitivity of the muscle to GH. Preincubation of the diaphragm for 3 hours with puromycin in a concentration of 200 μg/ml markedly decreased the subsequent basal uptake of both AIB-14C and D-xylose-14C, in the presence of puromycin, and abolished the stimulatory effect of GH on the accumulation of AIB-14C. However, the effect of GH on the accumulation of D-xylose-14C was unchanged. The present observations are discussed and evaluated in relation to various mechanisms of GH action proposed to explain the dual nature of the hormone.


1984 ◽  
Vol 247 (5) ◽  
pp. E639-E644
Author(s):  
C. M. Cameron ◽  
J. L. Kostyo ◽  
J. A. Rillema ◽  
S. E. Gennick

The biological activity profile of reduced and S-carboxymethylated human growth hormone (RCM-hGH) was determined to establish its suitability for study of the diabetogenic property of hGH. RCM-hGH was found to have greatly attenuated in vivo growth-promoting activity in the 9-day weight-gain test in hypophysectomized rats (approximately 1%) and to have a similar low order of in vitro activity in stimulating amino acid incorporation into the protein of the isolated rat diaphragm. RCM-hGH also only had approximately 1% of the in vitro insulin-like activity of the native hormone on isolated adipose tissue from hypophysectomized rats. In contrast, RCM-hGH retained substantial in vivo diabetogenic activity in the ob/ob mouse, appearing to have approximately 50% of the activity of the native hormone. RCM-hGH was also found to retain significant, although attenuated (25%), in vitro lactogenic activity when tested for the ability to stimulate amino acid incorporation into a casein-rich protein fraction in mouse mammary gland explants. Because RCM-hGH exhibits a high degree of diabetogenic activity, although lacking significant anabolic or insulin-like activities, it will be useful as a "monovalent" probe for the study of the molecular mechanism of the diabetogenic action of GH.


Sign in / Sign up

Export Citation Format

Share Document