RELATIONSHIP BETWEEN IN VITRO BIOASSAY AND RADIOIMMUNOASSAY ESTIMATES OF LH IN HUMAN SERUM DEPENDING ON DIFFERENT STANDARD PREPARATIONS.

1979 ◽  
Vol 92 (2_Supplb) ◽  
pp. S129-S157 ◽  
Author(s):  
V. Lichtenberg ◽  
S. Elsner ◽  
V.G. Pahnke
Blood ◽  
1990 ◽  
Vol 76 (7) ◽  
pp. 1323-1329 ◽  
Author(s):  
AW Wognum ◽  
V Lam ◽  
R Goudsmit ◽  
G Krystal

Abstract The accurate measurement of biologically active erythropoietin (Ep) in human serum and plasma using present in vivo and in vitro bioassays is difficult because of the presence of both inhibitors and non-Ep stimulators of erythropoiesis. We have developed a simple procedure to quantitatively purify Ep from serum and plasma for subsequent testing in the phenylhydrazine-treated mouse spleen cell assay. The method involves absorption of Ep to an immobilized high-affinity anti-Ep monoclonal antibody and acid elution of the antibody-bound material. After neutralization, the eluted EP is then tested directly in the in vitro bioassay without interference by other serum proteins. By using magnetic beads as a solid support for the antibody, washing and elution steps can be performed rapidly and efficiently. Recoveries of Ep after this procedure show very little sample-to-sample variation and are consistently between 45% and 55%, which is close to the maximum binding expected for the anti-Ep antibody. Coupled with the 7.4-fold concentration that this procedure affords, there is an overall increase in sensitivity of three- to fourfold, which makes this assay suitable for accurately measuring Ep levels in patients with below-average titers. Results with this magnetic bead assay indicate that accurate and reproducible estimates for Ep levels in the serum and plasma from healthy donors as well as from patients with hematologic disorders can be obtained. Titers of biologically active Ep in the sera from a group of patients with either leukemia or lymphoma were found to be elevated, and the values correlated well with titers of immunoreactive Ep measured in the Ep radioimmunoassay. Because of its specificity and high sensitivity, the magnetic bead assay is a valuable alternative to immunoassays for the measurement of elevated, normal, and even subnormal Ep levels in human serum and plasma.


Blood ◽  
1990 ◽  
Vol 76 (7) ◽  
pp. 1323-1329
Author(s):  
AW Wognum ◽  
V Lam ◽  
R Goudsmit ◽  
G Krystal

The accurate measurement of biologically active erythropoietin (Ep) in human serum and plasma using present in vivo and in vitro bioassays is difficult because of the presence of both inhibitors and non-Ep stimulators of erythropoiesis. We have developed a simple procedure to quantitatively purify Ep from serum and plasma for subsequent testing in the phenylhydrazine-treated mouse spleen cell assay. The method involves absorption of Ep to an immobilized high-affinity anti-Ep monoclonal antibody and acid elution of the antibody-bound material. After neutralization, the eluted EP is then tested directly in the in vitro bioassay without interference by other serum proteins. By using magnetic beads as a solid support for the antibody, washing and elution steps can be performed rapidly and efficiently. Recoveries of Ep after this procedure show very little sample-to-sample variation and are consistently between 45% and 55%, which is close to the maximum binding expected for the anti-Ep antibody. Coupled with the 7.4-fold concentration that this procedure affords, there is an overall increase in sensitivity of three- to fourfold, which makes this assay suitable for accurately measuring Ep levels in patients with below-average titers. Results with this magnetic bead assay indicate that accurate and reproducible estimates for Ep levels in the serum and plasma from healthy donors as well as from patients with hematologic disorders can be obtained. Titers of biologically active Ep in the sera from a group of patients with either leukemia or lymphoma were found to be elevated, and the values correlated well with titers of immunoreactive Ep measured in the Ep radioimmunoassay. Because of its specificity and high sensitivity, the magnetic bead assay is a valuable alternative to immunoassays for the measurement of elevated, normal, and even subnormal Ep levels in human serum and plasma.


1989 ◽  
Vol 121 (1) ◽  
pp. 46-54 ◽  
Author(s):  
Ying-Qing Ding ◽  
Ilpo Huhtaniemi

Abstract. The present study aimed at investigating the nature and causes of non-parallelism in testosterone responses to serial dilutions of peripheral serum and standard LH preparations in the mouse Leydig cell in vitro bioassay of LH. Immunoadsorption with monoclonal antibody to the β-subunit of LH was used to obtain LH-free serum; the procedure removed more than 98% of the immunoassayable LH. When a constant amount of the LH-free serum was added to standard dilutions, the bioassay dose-response curves to serum dilutions and standards became parallel, i.e. the well-known source of error of this assay system was eliminated. When standard curves prepared in medium and LH-free serum (final concentration 10%) were compared, no effect of the serum was found on basal cAMP and testosterone production. However, the LH-stimulated testosterone and cAMP production were suppressed by serum by a rather constant factor of 40%. Mild heating (60°C, 15 min) or treatment with dextran-coated charcoal, but not ether extraction, was able to eliminate the inhibitory activity of the LH-free serum. Binding studies demonstrated that [125I]hCG interaction with mouse Leydig cell homogenates was inhibited by LH-free serum in a fashion indicative of reduced LH receptor number, but not of reduced binding affinity. In conclusion, these data show that human serum contains LH inhibitor(s) which affect the LH-receptor interaction and LH stimulated testosterone production in mouse Leydig cell in vitro. The effect is marked in serum concentration over 1.5% and it shows only minor variation between individual sera. This source of error can be effectively removed from the LH in vitro bioassay by using LH-free serum for preparation of dilutions of LH standards.


2011 ◽  
Vol 50 (06) ◽  
pp. 234-239 ◽  
Author(s):  
R. Guo ◽  
Y. Ma ◽  
R. Zhang ◽  
S. Liang ◽  
H. Shen ◽  
...  

Summary Aim: Angiogenesis plays a critical role in tumour formation and metastasis. Suitable radiolabeled angiogenesis inhibitor can be used for noninvasive imaging of angiogenesis and radionuclide therapy. Here we prepare rhenium-188 labeled recombinant human plasminogen kringle5 (188Re-rhk5) in a convenient manner than evaluate its properties in A549 lung adenocarcinoma. Methods: 188Rerhk5 was obtained by conjugating His group at the C end of rhk5 with fac- [188Re(H2O)3(CO)3]+. Chelating efficiency of fac-[188Re(H2O)3(CO)3]+ and radiolabeling efficiency of 188Re-rhk5 were measured by radio thin-layer chromatography (RTLC). In vitro stability of 188Re-rhk5 was determined in human serum at 37°C and analyzed by RTLC. Competition test was also performed to verify the specificity of binding. A biodistribution study was carried out in nude mice bearing A549 lung adenocarcinoma. Results: 188Rerhk5 was obtained with a radiolabel efficiency of 66.1%, the radiochemical purity (RCP) can marreach 95.2% after purification. 188Re-rhk5 showed high stability in human serum, the RCP was more than 80% even 12 h after incubation. Competition test showed a high binding specificity. Furthermore, this radio-complex was excreted mainly through kidneys and showed specific tumour uptake in mice bearing A549 tumours. Conclusion: 188Re-rhk5 was prepared by a simple method. Preliminary biodistribution results showed its potential as an agent for possible tumour imaging, therapy and encouraged further investigation.


2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


Sign in / Sign up

Export Citation Format

Share Document