Combination of novel two-photon photopolymerised scaffolds and bioactive elastin-like-recombinamers induce bone regeneration

2016 ◽  
Author(s):  
Carina Kampleitner ◽  
Gerhard Hildebrand ◽  
Klaus Liefeith ◽  
Constancio Gonzalez ◽  
Jose Carlos Rodriguez-Cabello ◽  
...  
Keyword(s):  
ACS Nano ◽  
2017 ◽  
Vol 11 (1) ◽  
pp. 742-751 ◽  
Author(s):  
Jitendra N. Tiwari ◽  
Young-Kyo Seo ◽  
Taeseung Yoon ◽  
Wang Geun Lee ◽  
Woo Jong Cho ◽  
...  

Nanomedicine ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. 1041-1053 ◽  
Author(s):  
Peter Timashev ◽  
Daria Kuznetsova ◽  
Anastasia Koroleva ◽  
Natalia Prodanets ◽  
Andrea Deiwick ◽  
...  

2018 ◽  
Vol 10 (2) ◽  
pp. 025009 ◽  
Author(s):  
Irina Alexandra Paun ◽  
Roxana Cristina Popescu ◽  
Cosmin Catalin Mustaciosu ◽  
Marian Zamfirescu ◽  
Bogdan Stefanita Calin ◽  
...  

Author(s):  
David W. Piston ◽  
Brian D. Bennett ◽  
Robert G. Summers

Two-photon excitation microscopy (TPEM) provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging and photochemistry. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10-5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


Author(s):  
David W. Piston

Two-photon excitation fluorescence microscopy provides attractive advantages over confocal microscopy for three-dimensionally resolved fluorescence imaging. Two-photon excitation arises from the simultaneous absorption of two photons in a single quantitized event whose probability is proportional to the square of the instantaneous intensity. For example, two red photons can cause the transition to an excited electronic state normally reached by absorption in the ultraviolet. In our fluorescence experiments, the final excited state is the same singlet state that is populated during a conventional fluorescence experiment. Thus, the fluorophore exhibits the same emission properties (e.g. wavelength shifts, environmental sensitivity) used in typical biological microscopy studies. In practice, two-photon excitation is made possible by the very high local instantaneous intensity provided by a combination of diffraction-limited focusing of a single laser beam in the microscope and the temporal concentration of 100 femtosecond pulses generated by a mode-locked laser. Resultant peak excitation intensities are 106 times greater than the CW intensities used in confocal microscopy, but the pulse duty cycle of 10−5 maintains the average input power on the order of 10 mW, only slightly greater than the power normally used in confocal microscopy.


2020 ◽  
Vol 48 (3) ◽  
pp. 755-764
Author(s):  
Benjamin B. Rothrauff ◽  
Rocky S. Tuan

Bone possesses an intrinsic regenerative capacity, which can be compromised by aging, disease, trauma, and iatrogenesis (e.g. tumor resection, pharmacological). At present, autografts and allografts are the principal biological treatments available to replace large bone segments, but both entail several limitations that reduce wider use and consistent success. The use of decellularized extracellular matrices (ECM), often derived from xenogeneic sources, has been shown to favorably influence the immune response to injury and promote site-appropriate tissue regeneration. Decellularized bone ECM (dbECM), utilized in several forms — whole organ, particles, hydrogels — has shown promise in both in vitro and in vivo animal studies to promote osteogenic differentiation of stem/progenitor cells and enhance bone regeneration. However, dbECM has yet to be investigated in clinical studies, which are needed to determine the relative efficacy of this emerging biomaterial as compared with established treatments. This mini-review highlights the recent exploration of dbECM as a biomaterial for skeletal tissue engineering and considers modifications on its future use to more consistently promote bone regeneration.


1996 ◽  
Vol 43 (9) ◽  
pp. 1765-1771 ◽  
Author(s):  
M. W. HAMILTON and D. S. ELLIOTT

Sign in / Sign up

Export Citation Format

Share Document