scholarly journals Autoregulation of hepatic glucose production

1998 ◽  
pp. 240-248 ◽  
Author(s):  
MC Moore ◽  
CC Connolly ◽  
AD Cherrington

In vitro evidence indicates that the liver responds directly to changes in circulating glucose concentrations with reciprocal changes in glucose production and that this autoregulation plays a role in maintenance of normoglycemia. Under in vivo conditions it is difficult to separate the effects of glucose on neural regulation mediated by the central nervous system from its direct effect on the liver. Nevertheless, it is clear that nonhormonal mechanisms can cause significant changes in net hepatic glucose balance. In response to hyperglycemia, net hepatic glucose output can be decreased by as much as 60-90% by nonhormonal mechanisms. Under conditions in which hepatic glycogen stores are high (i.e. the overnight-fasted state), a decrease in the glycogenolytic rate and an increase in the rate of glucose cycling within the liver appear to be the explanation for the decrease in hepatic glucose output seen in response to hyperglycemia. During more prolonged fasting, when glycogen levels are reduced, a decrease in gluconeogenesis may occur as a part of the nonhormonal response to hyperglycemia. A substantial role for hepatic autoregulation in the response to insulin-induced hypoglycemia is most clearly evident in severe hypoglycemia (< or = 2.8 mmol/l). The nonhormonal response to hypoglycemia apparently involves enhancement of both gluconeogenesis and glycogenolysis and is capable of supplying enough glucose to meet at least half of the requirement of the brain. The nonhormonal response can include neural signaling, as well as autoregulation. However, even in the absence of the ability to secrete counterregulatory hormones (glucocorticoids, catecholamines, and glucagon), dogs with denervated livers (to interrupt neural pathways between the liver and brain) were able to respond to hypoglycemia with increases in net hepatic glucose output. Thus, even though the endocrine system provides the primary response to changes in glycemia, autoregulation plays an important adjunctive role.

2020 ◽  
Vol 117 (12) ◽  
pp. 6733-6740 ◽  
Author(s):  
Thiago M. Batista ◽  
Sezin Dagdeviren ◽  
Shannon H. Carroll ◽  
Weikang Cai ◽  
Veronika Y. Melnik ◽  
...  

Insulin action in the liver is critical for glucose homeostasis through regulation of glycogen synthesis and glucose output. Arrestin domain-containing 3 (Arrdc3) is a member of the α-arrestin family previously linked to human obesity. Here, we show thatArrdc3is differentially regulated by insulin in vivo in mice undergoing euglycemic-hyperinsulinemic clamps, being highly up-regulated in liver and down-regulated in muscle and fat. Mice with liver-specific knockout (KO) of the insulin receptor (IR) have a 50% reduction inArrdc3messenger RNA, while, conversely, mice with liver-specific KO ofArrdc3(L-Arrdc3KO) have increased IR protein in plasma membrane. This leads to increased hepatic insulin sensitivity with increased phosphorylation of FOXO1, reduced expression of PEPCK, and increased glucokinase expression resulting in reduced hepatic glucose production and increased hepatic glycogen accumulation. These effects are due to interaction of ARRDC3 with IR resulting in phosphorylation of ARRDC3 on a conserved tyrosine (Y382) in the carboxyl-terminal domain. Thus,Arrdc3is an insulin target gene, and ARRDC3 protein directly interacts with IR to serve as a feedback regulator of insulin action in control of liver metabolism.


2021 ◽  
Vol 22 (19) ◽  
pp. 10796
Author(s):  
Eunyoung Lee ◽  
Xilin Zhang ◽  
Tomoe Noda ◽  
Junki Miyamoto ◽  
Ikuo Kimura ◽  
...  

Background: α-cyclodextrin (α-CD) is one of the dietary fibers that may have a beneficial effect on cholesterol and/or glucose metabolism, but its efficacy and mode of action remain unclear. Methods: In the present study, we examined the anti-hyperglycemic effect of α-CD after oral loading of glucose and liquid meal in mice. Results: Administration of 2 g/kg α-CD suppressed hyperglycemia after glucose loading, which was associated with increased glucagon-like peptide 1 (GLP-1) secretion and enhanced hepatic glucose sequestration. By contrast, 1 g/kg α-CD similarly suppressed hyperglycemia, but without increasing secretions of GLP-1 and insulin. Furthermore, oral α-CD administration disrupts lipid micelle formation through its inclusion of lecithin in the gut luminal fluid. Importantly, prior inclusion of α-CD with lecithin in vitro nullified the anti-hyperglycemic effect of α-CD in vivo, which was associated with increased intestinal mRNA expressions of SREBP2-target genes (Ldlr, Hmgcr, Pcsk9, and Srebp2). Conclusions: α-CD elicits its anti-hyperglycemic effect after glucose loading by inducing lecithin inclusion in the gut lumen and activating SREBP2, which is known to induce cholecystokinin secretion to suppress hepatic glucose production via a gut/brain/liver axis.


1997 ◽  
Vol 273 (1) ◽  
pp. E17-E27
Author(s):  
Z. Bakkour ◽  
D. Laouari ◽  
S. Dautrey ◽  
J. P. Yvert ◽  
C. Kleinknecht

To understand the mechanism of hepatic glycogen depletion found in uremia and under sucrose feeding, we examined net hepatic glycogenolysis-associated active enzymes and metabolites during fasting. Liver was taken 2, 7, and 18 h after food removal in uremic and pair-fed control rats fed either a sucrose or cornstarch diet for 21 days. Other uremic and control rats fasted for 18 h were refed a sucrose meal to measure glycogen increment. Glycogen storage in uremia was normal, suggesting effective glycogen synthesis. During a short fast, sucrose feeding and uremia enhanced net glycogenolysis through different but additive mechanisms. Under sucrose feeding, there were high phosphorylase alpha levels associated with hepatic insulin resistance. In uremia, phosphorylase alpha levels were low, but the enzyme was probably activated in vivo by a fall of inhibitors (ATP, alpha-glycerophosphate, fructose-1,6-diphosphate, and glucose) and a rise of Pi, as verified in vitro. Enhanced gluconeogenesis was also suggested, but excessive hepatic glucose production was unlikely in uremia. During fasting, hypoglycemia occurred in uremia due to reduced glycogenolysis, inefficient hepatic gluconeogenesis, and impaired renal gluconeogenesis. This may be relevant to poor fasting tolerance in uremia, which could be aggravated under excessive sucrose intake.


2015 ◽  
Vol 100 (7) ◽  
pp. 2525-2531 ◽  
Author(s):  
Satya Dash ◽  
Changting Xiao ◽  
Cecilia Morgantini ◽  
Khajag Koulajian ◽  
Gary F. Lewis

Purpose: In addition to its direct action on the liver to lower hepatic glucose production, insulin action in the central nervous system (CNS) also lowers hepatic glucose production in rodents after 4 hours. Although CNS insulin action (CNSIA) modulates hepatic glycogen synthesis in dogs, it has no net effect on hepatic glucose output over a 4-hour period. The role of CNSIA in regulating plasma glucose has recently been examined in humans and is the focus of this review. Methods and Results: Intransal insulin (INI) administration increases CNS insulin concentration. Hence, INI can address whether CNSIA regulates plasma glucose concentration in humans. We and three other groups have sought to answer this question, with differing conclusions. Here we will review the critical aspects of each study, including its design, which may explain these discordant conclusions. Conclusions: The early glucose-lowering effect of INI is likely due to spillover of insulin into the systemic circulation. In the presence of simultaneous portal and CNS hyperinsulinemia, portal insulin action is dominant. INI administration does lower plasma glucose independent of peripheral insulin concentration (between ∼3 and 6 h after administration), suggesting that CNSIA may play a role in glucose homeostasis in the late postprandial period when its action is likely greatest and portal insulin concentration is at baseline. The potential physiological role and purpose of this pathway are discussed in this review. Because the effects of INI are attenuated in patients with type 2 diabetes and obesity, this is unlikely to be of therapeutic utility.


1987 ◽  
Vol 252 (2) ◽  
pp. E230-E236 ◽  
Author(s):  
M. Lavelle-Jones ◽  
M. H. Scott ◽  
O. Kolterman ◽  
A. H. Rubenstein ◽  
J. M. Olefsky ◽  
...  

By using the euglycemic glucose-clamp technique we have observed the effects of comparable low dose proinsulin and insulin infusions on isotopically determined glucose turnover in 20 anesthetized dogs. In each animal somatostatin (SRIF) infusion was used to suppress endogenous pancreatic hormone secretion and basal glucagon was replaced. Peripheral proinsulin (0.083 micrograms X kg-1 X min-1) and insulin (350 microU X kg-1 X min-1) levels 15- to 20-fold higher than insulin on a molar basis, based on previous observations that proinsulin has only 5-10% the biologic potency of insulin. Three groups of infusion studies were performed: SRIF and glucagon (n = 5); SRIF, glucagon, and proinsulin (n = 10); and SRIF, glucagon, and insulin (n = 5). The mean serum proinsulin level of 2.43 +/- 0.36 pmol/ml achieved represented a 17-fold excess compared with the mean serum insulin level of 0.14 +/- 0.03 pmol (20 +/- 4 microU/ml). At these concentrations, both hormones reduced hepatic glucose production rates by approximately 50% to 2.0 +/- 0.2 mg X kg-1 X min-1 and 1.8 +/- 0.5 mg X kg-1 X min-1, respectively. In contrast, proinsulin failed to stimulate peripheral glucose utilization, whereas insulin led to a 2.0 +/- 0.3 mg X kg-1 X min-1 increment (approximately 50% increase) in glucose uptake (P less than 0.05). Thus at low infusion rates proinsulin exerts its effect predominantly by suppressing hepatic glucose production without measurable stimulation of peripheral glucose disposal. In contrast, for a comparable degree of hepatic glucose output suppression, insulin also significantly stimulates glucose disposal.


2003 ◽  
Vol 284 (4) ◽  
pp. E695-E707 ◽  
Author(s):  
Stephanie M. Gustavson ◽  
Chang An Chu ◽  
Makoto Nishizawa ◽  
Ben Farmer ◽  
Doss Neal ◽  
...  

Epinephrine increases net hepatic glucose output (NHGO) mainly via increased gluconeogenesis, whereas glucagon increases NHGO mainly via increased glycogenolysis. The aim of the present study was to determine how the two hormones interact in controlling glucose production. In 18-h-fasted conscious dogs, a pancreatic clamp initially fixed insulin and glucagon at basal levels, following which one of four protocols was instituted. In G + E, glucagon (1.5 ng · kg−1 · min−1; portally) and epinephrine (50 ng · kg−1 · min−1; peripherally) were increased; in G, glucagon was increased alone; in E, epinephrine was increased alone; and in C, neither was increased. In G, E, and C, glucose was infused to match the hyperglycemia seen in G + E (∼250 mg/dl). The areas under the curve for the increase in NHGO, after the change in C was subtracted, were as follows: G = 661 ± 185, E = 424 ± 158, G + E = 1,178 ± 57 mg/kg. Therefore, the overall effects of the two hormones on NHGO were additive. Additionally, glucagon exerted its full glycogenolytic effect, whereas epinephrine exerted its full gluconeogenic effect, such that both processes increased significantly during concurrent hormone administration.


1998 ◽  
Vol 275 (3) ◽  
pp. E432-E439 ◽  
Author(s):  
Owen P. McGuinness ◽  
Joseph Ejiofor ◽  
Laurent P. Audoly ◽  
Nancy Schrom

We previously reported that simulation of the chronic hyperglucagonemia seen during infection was unable to recreate the infection-induced increase in hepatic glucose production. However, chronic hyperglucagonemia was accompanied by a fall in the arterial levels of gluconeogenic precursors as opposed to a rise as is seen during infection. Thus our aim was to determine whether an infusion of gluconeogenic precursors could increase hepatic glucose production in a setting of hyperglucagonemia. Studies were done in 11 conscious chronically catheterized dogs in which sampling (artery and portal and hepatic veins) and infusion catheters (splenic vein) were implanted 17 days before study. Forty-eight hours before infusion of gluconeogenic (GNG) precursors, a sterile fibrinogen clot was placed into the peritoneal cavity. Glucagon was infused over the subsequent 48-h period to simulate the increased glucagon levels (∼500 pg/ml) seen during infection. On the day of the experiment, somatostatin was infused peripherally, and basal insulin and simulated glucagon were infused intraportally. After a basal period, a two-step increase in lactate and alanine was initiated (120 min/step; n= 5). Lactate (Δ479 ± 25 and Δ1,780 ± 85 μM; expressed as change from basal in periods I and II, respectively) and alanine (Δ94 ± 13 and Δ287 ± 44 μM) levels were increased. Despite increases in net hepatic GNG precursor uptake (Δ0.7 ± 0.3 and Δ1.1 ± 0.4 mg glucose ⋅ kg−1⋅ min−1), net hepatic glucose output did not increase. Because nonesterified fatty acid (NEFA) levels fell, in a second series of studies, the fall in NEFA was eliminated. Intralipid and heparin were infused during the two-step substrate infusion to maintain the NEFA levels constant in period I and increase NEFA availability in period II (Δ −29 ± 29 and Δ689 ± 186 μM; n = 6). In the presence of similar increases in net hepatic GNG precursor uptake and despite increases in arterial glucose levels (Δ17 ± 5 and Δ38 ± 12 mg/dl), net hepatic glucose output increased (Δ0.6 ± 0.1 and Δ0.7 ± 0.2 mg ⋅ kg−1⋅ min−1). In summary, a chronic increase in glucagon, when combined with an acute increase in gluconeogenic precursor and maintenance of NEFA supply, increases hepatic glucose output as is seen during infection.


1983 ◽  
Vol 244 (2) ◽  
pp. E190-E195 ◽  
Author(s):  
R. W. Stevenson ◽  
J. A. Parsons ◽  
K. G. Alberti

The effects of peripheral and portal intravenous infusions of insulin on hepatic glucose production and glucose recycling have been compared in conscious diabetic dogs. Glucose turnover (Ra) was estimated using a priming dose of [3-3H]glucose and [1-14C]-glucose followed by constant intravenous infusion. Glucose recycling was calculated from 3H-Ra - 14C-Ra. In eight normal dogs, mean 3H-Ra was 3.0 mg X kg-1 X min-1 and recycling 19%. When these dogs were made diabetic with alloxan and streptozotocin the 3H-Ra rose to 6.2 mg X kg-1 X min-1 (P less than 0.001) and recycling to 24% (P less than 0.05). Insulin infusion for 2.5 h at 0.006 U X kg-1 X h-1 intraportally decreased 3H-Ra to 4.0 mg X kg-1 X min-1 (P less than 0.01 compared with untreated diabetic), whereas peripheral infusion at this rate had no significant effect. Insulin infusion at 0.05 U X kg-1 X h-1 by the peripheral and portal circulations reduced 3H-Ra to the normal range: 3.1 and 2.8 mg X kg-1 X min-1, respectively. Glucose recycling was also normalized by portal insulin infusion (20%) but was significantly decreased by peripheral infusion (11%, P less than 0.01). Thus the liver responds to lower infusion rates of insulin by the intraportal route, and only this mode of administration normalizes both hepatic glucose output and glucose recycling.


Sign in / Sign up

Export Citation Format

Share Document