counterregulatory hormones
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 6)

H-INDEX

22
(FIVE YEARS 0)

2021 ◽  
Author(s):  
Andreas Andersen ◽  
Jonatan I Bagger ◽  
Maria Pa Baldassarre ◽  
Mikkel B. Christensen ◽  
Kirsten U Abelin ◽  
...  

Objective. Hypoglycemia is associated with increased risk of cardiovascular disease including cardiac arrhythmias. We investigated the effect of hypoglycemia in the setting of acute glycemic fluctuations on cardiac rhythm and cardiac repolarization in insulin-treated patients with type 2 diabetes compared with matched controls without diabetes. Design. A non-randomised, mechanistic intervention study Methods. Insulin-treated patients with type 2 diabetes (n=21, [mean±SD] age 62.8±6.5 years, BMI 29.0±4.2 kg/m2, HbA1c 6.8±0.5% [51.0±5.4 mmol/mol]) and matched controls (n=21, age 62.2±8.3 years, BMI 29.2±3.5 kg/m2, HbA1c 5.3±0.3% [34.3±3.3 mmol/mol]) underwent a sequential hyperglycemic and hypoglycemic clamp with three steady-states of plasma glucose: 1) fasting plasma glucose, 2) hyperglycemia (fasting plasma glucose+10 mmol/L) and 3) hyperinsulinemic hypoglycemia (plasma glucose<3.0 mmol/L). Participants underwent continuous ECG monitoring and blood samples for counterregulatory hormones and plasma potassium were obtained. Results. Both groups experienced progressively increasing heart rate corrected QT (Fridericia’s formula)) interval prolongations during hypoglycemia ([∆mean (95% CI)] 31 ms [16, 45] and 39 ms [24, 53] in the group of patients with type 2 diabetes and controls, respectively) with similar increases from baseline at the end of the hypoglycemic phase (P=0.43). The incidence of ventricular premature beats increased significantly in both groups during hypoglycemia (P=0.033 and P<0.0001, respectively). One patient with type 2 diabetes developed atrial fibrillation during recovery from hypoglycemia. Conclusions. In insulin-treated patients with type 2 diabetes and controls without diabetes, hypoglycemia causes clinically significant and similar increases in cardiac repolarization that might increase vulnerability for serious cardiac arrythmias and sudden cardiac death.


2021 ◽  
Author(s):  
Kristina E. Almby ◽  
Martin H. Lundqvist ◽  
Niclas Abrahamsson ◽  
Sofia Kvernby ◽  
Markus Fahlström ◽  
...  

While Roux-en-Y Gastric Bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes hypoglycemia. Previous work showed attenuated counter-regulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. <p>In this study, 11 non-diabetic subjects with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by FDG PET and activation of brain networks by functional MRI. Post- vs pre-surgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake and this was similar for post- and pre-surgery, whereas hypothalamic FDG uptake was reduced. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen post-surgery. In early hypoglycemia, there was increased activation post- vs pre-surgery of neural networks in CNS regions implicated in glucose regulation such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.</p>


2021 ◽  
Author(s):  
Kristina E. Almby ◽  
Martin H. Lundqvist ◽  
Niclas Abrahamsson ◽  
Sofia Kvernby ◽  
Markus Fahlström ◽  
...  

While Roux-en-Y Gastric Bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes hypoglycemia. Previous work showed attenuated counter-regulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. <p>In this study, 11 non-diabetic subjects with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by FDG PET and activation of brain networks by functional MRI. Post- vs pre-surgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake and this was similar for post- and pre-surgery, whereas hypothalamic FDG uptake was reduced. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen post-surgery. In early hypoglycemia, there was increased activation post- vs pre-surgery of neural networks in CNS regions implicated in glucose regulation such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.</p>


2021 ◽  
Author(s):  
Kristina E. Almby ◽  
Martin H. Lundqvist ◽  
Niclas Abrahamsson ◽  
Sofia Kvernby ◽  
Markus Fahlström ◽  
...  

While Roux-en-Y Gastric Bypass (RYGB) surgery in obese individuals typically improves glycemic control and prevents diabetes, it also frequently causes hypoglycemia. Previous work showed attenuated counter-regulatory responses following RYGB. The underlying mechanisms as well as the clinical consequences are unclear. <p>In this study, 11 non-diabetic subjects with severe obesity were investigated pre- and post-RYGB during hyperinsulinemic hypoglycemic clamps. Assessments were made of hormones, cognitive function, cerebral blood flow by arterial spin labeling, brain glucose metabolism by FDG PET and activation of brain networks by functional MRI. Post- vs pre-surgery, we found a general increase of cerebral blood flow but a decrease of total brain FDG uptake during normoglycemia. During hypoglycemia, there was a marked increase in total brain FDG uptake and this was similar for post- and pre-surgery, whereas hypothalamic FDG uptake was reduced. During hypoglycemia, attenuated responses of counterregulatory hormones and improvements in cognitive function were seen post-surgery. In early hypoglycemia, there was increased activation post- vs pre-surgery of neural networks in CNS regions implicated in glucose regulation such as the thalamus and hypothalamus. The results suggest adaptive responses of the brain that contribute to lowering of glycemia following RYGB, and the underlying mechanisms should be further elucidated.</p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Vidisha Raje ◽  
Katelyn W. Ahern ◽  
Brittany A. Martinez ◽  
Nancy L. Howell ◽  
Vici Oenarto ◽  
...  

Abstract Stress hyperglycemia and insulin resistance are evolutionarily conserved metabolic adaptations to severe injury including major trauma, burns, or hemorrhagic shock (HS). In response to injury, the neuroendocrine system increases secretion of counterregulatory hormones that promote rapid mobilization of nutrient stores, impair insulin action, and ultimately cause hyperglycemia, a condition known to impair recovery from injury in the clinical setting. We investigated the contributions of adipocyte lipolysis to the metabolic response to acute stress. Both surgical injury with HS and counterregulatory hormone (epinephrine) infusion profoundly stimulated adipocyte lipolysis and simultaneously triggered insulin resistance and hyperglycemia. When lipolysis was inhibited, the stress-induced insulin resistance and hyperglycemia were largely abolished demonstrating an essential requirement for adipocyte lipolysis in promoting stress-induced insulin resistance. Interestingly, circulating non-esterified fatty acid levels did not increase with lipolysis or correlate with insulin resistance during acute stress. Instead, we show that impaired insulin sensitivity correlated with circulating levels of the adipokine resistin in a lipolysis-dependent manner. Our findings demonstrate the central importance of adipocyte lipolysis in the metabolic response to injury. This insight suggests new approaches to prevent insulin resistance and stress hyperglycemia in trauma and surgery patients and thereby improve outcomes.


2020 ◽  
Vol 318 (5) ◽  
pp. E779-E790
Author(s):  
Christina Pedersen ◽  
Guillaume Kraft ◽  
Dale S. Edgerton ◽  
Melanie Scott ◽  
Ben Farmer ◽  
...  

Glucagon’s effect on hepatic glucose production (HGP), under hyperglycemic conditions, is time dependent such that after an initial burst of HGP, it slowly wanes. It is not known whether this is also the case under hypoglycemic conditions, where an increase in HGP is essential. This question was addressed using adrenalectomized dogs to avoid the confounding effects of other counterregulatory hormones. During the study, infusions of epinephrine and cortisol were given to maintain basal levels. Somatostatin and insulin (800 µU·kg−1·min−1) were infused to induce hypoglycemia. After 30 min, glucagon was infused at a basal rate (1 ng·kg−1·min−1, baGGN group, n = 5 dogs) or a rate eightfold basal (8 ng·kg−1·min−1, hiGGN group, n = 5 dogs) for 4 h. Glucose was infused to match the arterial glucose levels between groups (≈50 mg/dL). Our data showed that glucagon has a biphasic effect on the liver despite hypoglycemia. Hyperglucagonemia stimulated a rapid, transient peak in HGP (4-fold basal production) over ~60 min, which was followed by a slow reduction in HGP to a rate 1.5-fold basal. During the last 2 h of the experiment, hiGGN stimulated glucose production at a rate fivefold greater than baGGN (2.5 vs. 0.5 mg·kg−1·min−1, respectively), indicating a sustained effect of the hormone. Of note, the hypoglycemia-induced rises in norepinephrine and glycerol were smaller in hiGGN compared with the baGGN group despite identical hypoglycemia. This finding suggests that there is reciprocity between glucagon and the sympathetic nervous system such that when glucagon is increased, the sympathetic nervous response to hypoglycemia is downregulated.


2018 ◽  
Vol 125 (4) ◽  
pp. 1204-1209 ◽  
Author(s):  
Andreas Buch Møller ◽  
Thomas Schmidt Voss ◽  
Mikkel Holm Vendelbo ◽  
Steen Bønløkke Pedersen ◽  
Niels Møller ◽  
...  

Acute exercise increases autophagic signaling through Unc-51 like kinase-1 (ULK1) in human skeletal muscle during both anabolic and catabolic conditions. The aim of the present study was to investigate if changes in ULK1 Ser555 phosphorylation during exercise are reflected by changes in phosphorylation of a newly identified ULK1 substrate (ATG14 Ser29) and to elucidate the involvement of circulatory hormones in the regulation of autophagy in human skeletal muscle. We show that 1 h of cycling exercise increases ATG14 Ser29 phosphorylation during both hyperinsulinemic euglycemic and euinsulinemic euglycemic conditions. This could suggest that counterregulatory hormones stimulate autophagy in skeletal muscle, as circulating concentrations of these hormones are highly elevated during exercise. Furthermore, ATG14 Ser29 correlated positively with ULK1 phosphorylation, suggesting that ULK1 Ser555 (activating site) phosphorylation reflects ULK1 kinase activity. In a separate series of experiments, we show that insulin stimulates ULK1 phosphorylation at Ser757 (inhibitory site) in both hypoglycemic and euglycemic conditions, suggesting that counterregulatory hormones (such as epinephrine, norepinephrine, growth hormone, and glucagon) have limited effects on autophagy signaling in human skeletal muscle. In conclusion, 1 h of cycling exercise increases phosphorylation of ATG14 at Ser29 in a pattern that mirrors ULK1 phosphorylation at Ser555. Moreover, insulin effects on autophagy signaling in human skeletal muscle are independent of hypoglycemic and euglycemic conditions. NEW & NOTEWORTHY Autophagy signaling is regulated in a hierarchical order by exercise, insulin, and counterregulatory hormones. Exercise-induced autophagy signaling is stimulated by local factors in skeletal muscle rather than circulatory hormones. Unc-51 like kinase-1 (ULK1) phosphorylation at Ser555 reflects ULK1 kinase activity.


2017 ◽  
Vol 42 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Deanna R. Funk ◽  
Normand G. Boulé ◽  
Peter A. Senior ◽  
Jane E. Yardley

Islet transplantation (ITx) is effective in preventing severe hypoglycemia by restoring glucose-dependent insulin secretion in type 1 diabetes (T1D), but may not normalize glucose regulation. Studies suggest that physical activity plays a role in maintaining β-cell mass and function in individuals with type 2 diabetes and animal models of diabetes. This could indicate that physical activity plays a role in graft survival in ITx recipients. This review’s objective is to assess current knowledge related to physical activity in ITx recipients. Responses to other challenges in blood glucose control (i.e., hypoglycemia) in human ITx recipients were examined to provide in-depth background information. To identify studies involving exercise in ITx recipients, a systematic search was performed using PubMed, Medline, and Embase, which revealed 277 English language publications. Publications were excluded if they did not involve ITx recipients; did not involve physical activity or hypoglycemia; or did not report on glucose, insulin, or counterregulatory hormones. During induced hypoglycemia, studies indicate normal suppression of insulin in ITx individuals compared with healthy non-T1D controls. Studies involving exercise in ITx animals have conflicting results, with time since transplantation and transplantation site (spleen, liver, kidney, peritoneal cavity) as possible confounders. No study examining blood glucose responses to physical activity in human ITx recipients was identified. A small number of induced-hypoglycemia studies in humans, and exercise studies in animals, would suggest that glucoregulation is greatly improved yet is still imperfect in this population and that ITx does not fully restore counterregulatory responses to challenges in blood glucose homeostasis.


2014 ◽  
Vol 307 (7) ◽  
pp. E539-E552 ◽  
Author(s):  
Jonathan M. Peake ◽  
Sok Joo Tan ◽  
James F. Markworth ◽  
James A. Broadbent ◽  
Tina L. Skinner ◽  
...  

This study investigated the effects of high-intensity interval training (HIIT) vs. work-matched moderate-intensity continuous exercise (MOD) on metabolism and counterregulatory stress hormones. In a randomized and counterbalanced order, 10 well-trained male cyclists and triathletes completed a HIIT session [81.6 ± 3.7% maximum oxygen consumption (V̇o2 max); 72.0 ± 3.2% peak power output; 792 ± 95 kJ] and a MOD session (66.7 ± 3.5% V̇o2 max; 48.5 ± 3.1% peak power output; 797 ± 95 kJ). Blood samples were collected before, immediately after, and 1 and 2 h postexercise. Carbohydrate oxidation was higher ( P = 0.037; 20%), whereas fat oxidation was lower ( P = 0.037; −47%) during HIIT vs. MOD. Immediately after exercise, plasma glucose ( P = 0.024; 20%) and lactate ( P < 0.01; 5.4×) were higher in HIIT vs. MOD, whereas total serum free fatty acid concentration was not significantly different ( P = 0.33). Targeted gas chromatography-mass spectromtery metabolomics analysis identified and quantified 49 metabolites in plasma, among which 11 changed after both HIIT and MOD, 13 changed only after HIIT, and 5 changed only after MOD. Notable changes included substantial increases in tricarboxylic acid intermediates and monounsaturated fatty acids after HIIT and marked decreases in amino acids during recovery from both trials. Plasma adrenocorticotrophic hormone ( P = 0.019), cortisol ( P < 0.01), and growth hormone ( P < 0.01) were all higher immediately after HIIT. Plasma norepinephrine ( P = 0.11) and interleukin-6 ( P = 0.20) immediately after exercise were not significantly different between trials. Plasma insulin decreased during recovery from both HIIT and MOD ( P < 0.01). These data indicate distinct differences in specific metabolites and counterregulatory hormones following HIIT vs. MOD and highlight the value of targeted metabolomic analysis to provide more detailed insights into the metabolic demands of exercise.


Angiology ◽  
2013 ◽  
Vol 65 (2) ◽  
pp. 160-160 ◽  
Author(s):  
Hakan Sarlak ◽  
Muharrem Akhan ◽  
Mustafa Cakar ◽  
Omer Kurt ◽  
Erol Arslan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document