scholarly journals IGF-I, IGF-II, 'free' IGF-I and IGF-binding proteins-2 to -6 during high-dose oestrogen treatment in constitutionally tall girls

2002 ◽  
pp. 823-829 ◽  
Author(s):  
RP Rooman ◽  
LO De Beeck ◽  
M Martin ◽  
J Van Doorn ◽  
S Mohan ◽  
...  

OBJECTIVE: To investigate the effect of high-dose oestrogen treatment on IGF-I, IGF-II, free-dissociable IGF-I and the IGF-binding proteins (IGFBP)-2 to -6 in girls with constitutional tall stature. METHODS: In patient cohort 1, blood samples were drawn before and after 3 months of daily oral treatment with 0.1 mg ethinyloestradiol. In cohort 2, samples were collected at the end of the treatment period and 3 to 6 months afterwards. IGFs and IGFBPs were analysed by specific immunoassays and by Western ligand blot. RESULTS: Total IGF-I decreased significantly on oestrogen treatment and increased again after oestrogen withdrawal. Ligand blot analysis showed a clear reduction in a 34 kDa band, corresponding to IGFBP-2, and a strong induction of a 24 kDa band, corresponding to the non-glycosylated form of IGFBP-4. These changes were confirmed by specific immunological methods. The serum levels of IGFBP-3, IGFBP-5 and IGFBP-6 remained unchanged during the first 3 months of treatment. In cohort 2, IGFBP-3 and IGFBP-6 increased after oestrogen withdrawal. Free-dissociable IGF-I fell to 35+/-4% during oestrogen therapy and rose again when the treatment was stopped. CONCLUSIONS: Oestrogens modulate the serum concentrations of several components of the IGF system. The fall in total IGF-I is not explained by a decrease in IGFBPs but probably results from a decreased synthesis.

1995 ◽  
Vol 145 (3) ◽  
pp. 545-557 ◽  
Author(s):  
J M Carr ◽  
J A Owens ◽  
P A Grant ◽  
P E Walton ◽  
P C Owens ◽  
...  

Abstract The IGF-binding proteins (IGFBPs) are a family of at least six structurally related proteins, which bind the IGFs and modulate their actions, including the regulation of preand postnatal growth. In this study we have examined the relationship between circulating and tissue mRNA levels of IGFBPs and related this to circulating IGFs in the fetal sheep over the gestational period when rapid growth and development occurs. Circulating IGFBP-2, as measured by Western ligand blot (WLB), increases between early and mid gestation, remains high, then declines throughout late gestation (P=0·0002). Circulating IGFBP-3 increases throughout gestation, as measured by WLB or RIA (P=0·04 and P=0·0001 respectively), as does circulating IGFBP-4 (P=0·004). These ontogenic changes in circulating IGFBPs-2 and -4 are paralleled by changes in liver mRNA for these proteins and, for IGFBP-2, by those in kidney IGFBP-2 mRNA also. This suggests that liver and kidney may be the primary contributors to circulating IGFBP-2 and the liver to circulating IGFBP-4. IGFBP-2 mRNA is present in the heart and lung in early gestation but barely detectable in these tissues after approximately 60 days gestation. IGFBP-4 mRNA is also present in the heart in early but not late gestation, but is abundant in the lung throughout gestation. These results demonstrate tissue specific and developmental regulation of IGFBPs-2 and -4 at the mRNA level. To assess any role the circulating IGFs may play in mediating these changes in IGFBPs, or vice versa, both plasma IGF-I and IGF-II were measured by RIA. Circulating IGF-I increases as gestation progresses (P=0·0001), while circulating IGF-II increases between early and mid gestation, remains high (P=0·01), then declines. Circulating IGF-I is positively correlated with fetal weight (r=0·66, P=0·03), circulating IGFBP-3 (r=0·54, P=0·01) and IGFBP-4 (r=0·52, P=0·01). Circulating IGF-II positively correlates with circulating IGFBP-2 (r=0·48, P=0·02) throughout gestation and at 1 day postnatally. These relationships are consistent with circulating IGF-I influencing IGFBPs-3 and -4, and similarly, IGF-II determining IGFBP-2, or vice versa. Alternatively, these correlations may reflect coordinate regulation of IGF and IGFBP by a common factor. Journal of Endocrinology (1995) 145, 545–557


1997 ◽  
Vol 154 (2) ◽  
pp. 329-346 ◽  
Author(s):  
J P McCann ◽  
S C Loo ◽  
D L Aalseth ◽  
T Abribat

Abstract The effect of body condition per se on plasma IGFs and IGF-binding proteins (IGFBPs) and the whole-body metabolic responses to recombinant DNA-derived bovine GH (rbGH) in both the fed and the fasted state were determined in lean and dietary obese sheep (n=6/group). Sheep at zero-energy balance and equilibrium body weight were injected s.c. for 12 days with 100 μg/kg rbGH immediately before their morning feeding. Before GH treatment, fasting plasma concentrations of insulin (17·0 ± 1·9 vs 7·5 ± 0·7 μU/ml), IGF-I (345 ± 25 vs 248 ± 10 ng/ml), glucose (52·6 ± 1·1 vs 48·3 ± 0·7 mg/dl), and free fatty acid (FFA) (355 ± 45 vs 229 ± 24 nmol/ml) were greater (P<0·05) and those of GH (1·1 ± 0·2 vs 2·6 ± 0·3 ng/ml) were lower (P<0·05) in obese than in lean sheep. Fasting concentrations of IGF-II and glucagon were not affected (P>0·05) by obesity. GH concentrations were increased equivalently by 6–9 ng/ml in lean and obese sheep during GH treatment. GH caused an immediate and a marked fivefold increase in the fasting insulin level in obese sheep but only minimally affected insulin concentration in lean sheep. The increment in fasting glucose during GH treatment was greater (P<0·05) in obese (8–12 mg/dl) than in lean (2–5 mg/dl) sheep. Frequent measurements in the first 8 h after feeding and injection of excipient (day 0) or the first (day 1), sixth (day 6) and twelfth (day 12) daily injection of GH showed that prandial metabolism in both groups of sheep was affected minimally by GH. However, GH treatment on day 1 (not days 6 or 12) acutely attenuated the feeding-induced suppression of plasma FFA in both groups of sheep and this effect was significantly greater in obese than in lean sheep. Although obese sheep were hyposomatotropic, the basal and GH-induced increases in plasma IGF-I concentrations were greater (P<0·05) in obese than in lean sheep. Plasma IGF-II was unaffected by obesity and was not increased by GH stimulation. Western ligand blotting showed that IGFBP-3 accounted for approximately 50–60% of the plasma IGF-I binding capacity in sheep respectively both before and during GH treatment. Basal plasma levels of IGFBP-2 were lower (P<0·05) and those of IGFBP-3 greater (P<0·05) in obese compared with lean sheep. GH increased the level of IGFBP-3 equally in lean and obese sheep, but suppressed the expression of IGFBP-2 more (P<0·05) in lean than in obese sheep. We concluded that the diabetogenic-like actions of GH in sheep were exaggerated markedly by obesity, and were expressed more during the fasted than the fed states. The effects of GH stimulation on the endocrine pancreas may be selective for β-cells and preferentially enhanced by obesity. GH regulation of IGF-I and the IGFBPs differs in lean and obese sheep. Journal of Endocrinology (1997) 154, 329–346


1991 ◽  
Vol 275 (2) ◽  
pp. 441-446 ◽  
Author(s):  
C D Scott ◽  
R C Baxter

Insulin-like growth factors (IGFs) circulate predominantly in a growth-hormone-dependent ternary complex of 125-150 kDa. This study investigates the production of the alpha-subunit of this complex, an acid-labile glycoprotein without intrinsic IGF-binding activity, which binds to the IGF-binding protein IGFBP-3 in the presence of IGFs. Medium conditioned by primary cultures of rat hepatocytes produced alpha-subunit with similar complex-forming activity to purified rat serum alpha-subunit. Bovine growth hormone stimulated hepatocyte production of both IGF-I and alpha-subunit. IGF-I tracer bound to pure rat IGFBP-3 was converted from approx. 60 kDa to 150 kDa by serum alpha-subunit, whole rat serum or rat hepatocyte culture medium; this converting activity was destroyed by transient acidification. In contrast, IGF-I bound to hepatocyte-medium IGF-binding proteins could not be converted into a high-molecular-mass from by purified rat serum alpha-subunit. Rat serum and hepatocyte-medium alpha-subunit appeared identical by electrophoretic analysis, since reaction of either with cross-linked IGF-I.IGFBP-3 tracer resulted in bands of molecular mass 130 kDa and 160 kDa, probably representing intact and partially deglycosylated complexes. However, IGF-binding proteins in rat serum and hepatocyte medium were different, in that affinity labelling of medium binding proteins, depleted of endogenous IGFs, showed no evidence of the 50-60 kDa cluster of bands characteristic of rat serum IGFBP-3. We conclude that rat hepatocytes in primary culture produce alpha-subunit similar to that in rat serum; however, alpha-subunit is unable to form ternary complexes with hepatocyte IGF-binding proteins, since cultured hepatocytes do not secrete IGFBP-3.


2000 ◽  
Vol 278 (6) ◽  
pp. E1087-E1096 ◽  
Author(s):  
Charles H. Lang ◽  
Xiaoli Liu ◽  
Gerald J. Nystrom ◽  
Robert A. Frost

Previous studies demonstrate that thermal injury decreases circulating levels of insulin growth factor I (IGF-I) and alters the plasma concentration of several IGF binding proteins (IGFBP), but the mechanisms for these alterations have not been elucidated. In the current study, a 30% total body surface area full-thickness scald burn was produced in anesthetized rats, and animals were studied 24 h later. The plasma concentration of both total and free IGF-I was decreased (38 and 65%, respectively) in burn rats compared with values from time-matched control animals. Thermal injury decreased the IGF-I peptide content in liver ∼40%, as well as in fast-twitch skeletal muscle (56–69%) and heart (28%). In contrast, IGF-I content in kidney was elevated by 36% in burn rats. Northern blot analysis of liver indicated that burn decreased the expression of small (1.7- and 0.9- to 1.2-kb) IGF-I mRNA transcripts but increased the expression of the 7.5-kb transcript. In contrast, there was a coordinate decrease in all IGF-I mRNA transcripts in muscle and kidney of ∼30%. For liver, muscle, and kidney, there was no significant difference in the expression of growth hormone receptor mRNA between control and burn rats. Thermal injury increased plasma IGFBP-1 levels, and this change was associated with increased IGFBP-1 mRNA in both liver and kidney. IGFBP-3 levels in plasma were concomitantly decreased by burn injury. This change was associated with a reduction in IGFBP-3 mRNA in liver but an increased expression of IGFBP-3 in kidney and muscle. Thermal injury also decreased the concentration of the acid-labile subunit (ALS) in plasma and ALS mRNA expression in liver. Finally, hepatic expression of IGFBP-related peptide-1 was increased twofold in liver but was unchanged in kidney or muscle of burn rats. These results characterize burn-induced changes in various components of the IGF system in select tissues and thereby provide potential mechanisms for alterations in the circulating IGF system and for changes in tissue metabolism.


1995 ◽  
Vol 145 (3) ◽  
pp. 569-578 ◽  
Author(s):  
S M Donovan ◽  
R L Hintz ◽  
R G Rosenfeld

Abstract We have previously reported the presence of IGF-I and IGF-binding proteins (IGFBP-2, -3 and -4) in rat milk. Herein, the potential sources of rat milk IGF-I and IGFBPs were investigated. Lactating dams (day 14 postpartum) were separated from their pups and injected intraperitoneally with 0·45 μCi 125I-IGF-I or 125I-IGFBP-3. After 3 h, serum and milk of rats receiving 125I-IGF-I contained 7642 ± 3121 and 14 455 ± 7837 c.p.m./ml respectively. Serum and milk of rats given 125I-IGFBP-3 contained 7232 ± 1366 and 10 371 ± 4091 c.p.m./ml respectively. Sephacryl S-200 gel filtration chromatography demonstrated that the 125I-IGF-I in both serum and milk was primarily in the 150 kDa IGF-binding complex, whereas the distribution of 125I-IGFBP-3 differed between serum and milk. In serum, most of the 125I-IGFBP-3 was in the 150 kDa fraction, while most 125I-IGFBP-3 in milk was in the 40 kDa fraction. Northern analysis of liver showed IGFBP-1 and -3 mRNA expression, with variable expression of IGFBP-2 and -4 mRNA. In contrast, mammary tissue expressed only IGFBP-2 and -4 mRNA, suggesting that these IGFBPs in milk may arise from de novo synthesis within the mammary gland. The lack of detectable IGFBP-3 mRNA in mammary tissue and the translocation of 125I-IGFBP-3 from the serum suggest that milk IGFBP-3 arises from the maternal circulation. Journal of Endocrinology (1995) 145, 569–578


2000 ◽  
Vol 166 (1) ◽  
pp. 29-37 ◽  
Author(s):  
T Matsumoto ◽  
T Tsurumoto ◽  
MB Goldring ◽  
H Shindo

Insulin-like growth factor-I (IGF-I) is an important anabolic factor for cartilage tissue and its action is, in part, regulated by IGF-binding proteins (IGFBPs). The object of this study was to investigate the effects of IGFBPs on IGF-I action and on binding of IGF-I to cells using a reproducible immortalized human chondrocyte culture model. Treatment of the C-28/I2 cells with IGF-I or des(1-3)IGF-I in serum-free medium stimulated cell proliferation in a dose-dependent manner. However, the effect of des(1-3)IGF-I was more potent, thereby suggesting that endogenously produced IGFBPs inhibited IGF action. The stimulatory effect of IGF-I was inhibited significantly by addition of IGFBP-3 but enhanced slightly by IGFBP-5. However, neither IGFBP-3 nor IGFBP-5 had an effect on basal cell growth. Binding of (125)I-labeled IGF-I to the cells was displaced by both IGFBP-3 and IGFBP-5, although higher concentrations of unlabeled IGFBP-5 were required to displace IGF-I to the same extent as IGFBP-3. Treatment of the cells with IGF-I increased the levels of IGFBP-5 protein measured by Western ligand blotting, and stimulated a corresponding increase in IGFBP-5 mRNA while increasing type II collagen mRNA. Our findings indicate that the balance between IGFBP-3 and IGFBP-5 influences IGF receptor binding and its action on chondrocyte proliferation, and may thereby modulate cartilage metabolism.


Sign in / Sign up

Export Citation Format

Share Document