scholarly journals Differences in miRNA expression profiles between wild-type and mutated NIFTPs

2017 ◽  
Vol 24 (10) ◽  
pp. 543-553 ◽  
Author(s):  
Maria Denaro ◽  
Clara Ugolini ◽  
Anello Marcello Poma ◽  
Nicla Borrelli ◽  
Gabriele Materazzi ◽  
...  

Noninvasive encapsulated follicular variants of papillary thyroid carcinomas have been recently reclassified as noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTPs). NIFTPs exhibit a behavior that is very close to that of follicular adenomas but different from the infiltrative and invasive follicular variants of papillary thyroid carcinomas (FVPTCs). The importance of miRNAs to carcinogenesis has been reported in recent years. miRNAs seem to be promising diagnostic and prognostic molecular markers for thyroid cancer, and the combination of miRNA expression and mutational status might improve cytological diagnosis. The aim of the present study was to evaluate the miRNA expression profile in wild-type, RAS- or BRAF-mutated NIFTPs, infiltrative and invasive FVPTCs, and follicular adenomas using the nCounter miRNA Expression assay (NanoString Technologies). To identify the significant Kyoto Encyclopedia of Genes and Genomes (KEGG) molecular pathways associated with deregulated miRNAs, we used the union of pathways option in DNA Intelligent Analysis (DIANA) miRPath software. We have shown that the miRNA expression profiles of wild-type and mutated NIFTPs could be different. The expression profile of wild-type NIFTPs seems comparable to that of follicular adenomas, whereas mutated NIFTPs have an expression profile similar to that of infiltrative and invasive FVPTCs. The upregulation of 4 miRNAs (miR-221-5p, miR-221-3p, miR-222-3p, miR-146b-5p) and the downregulation of 8 miRNAs (miR-181a-3p, miR-28-5p, miR-363-3p, miR-342-3p, miR-1285-5p, miR-152-3p, miR-25-3p, miR-30e-3) in mutated NIFTPs compared to wild-type ones suggest a potential invasive-like phenotype by deregulating the specific pathways involved in cell adhesion and cell migration (Hippo signaling pathway, ECM-receptor interaction, adherens junction, regulation of actin cytoskeleton, fatty acid biosynthesis and metabolism).

2009 ◽  
Vol 102 (2) ◽  
pp. 376-382 ◽  
Author(s):  
S-Y Sheu ◽  
F Grabellus ◽  
S Schwertheim ◽  
K Worm ◽  
M Broecker-Preuss ◽  
...  

2012 ◽  
Vol 167 (3) ◽  
pp. 393-400 ◽  
Author(s):  
Patrizia Agretti ◽  
Eleonora Ferrarini ◽  
Teresa Rago ◽  
Antonio Candelieri ◽  
Giuseppina De Marco ◽  
...  

ObjectiveMicroRNAs (miRNAs) are small endogenous noncoding RNAs that pair with target messengers regulating gene expression. Changes in miRNA levels occur in thyroid cancer. Fine-needle aspiration (FNA) with cytological evaluation is the most reliable tool for malignancy prediction in thyroid nodules, but cytological diagnosis remains undetermined for 20% of nodules.DesignIn this study, we evaluated the expression of seven miRNAs in benign nodules, papillary thyroid carcinomas (PTCs), and undetermined nodules at FNA.MethodsThe prospective study included 141 samples obtained by FNA of thyroid nodules from 138 patients. miRNA expression was evaluated by quantitative RT-PCR and statistical analysis of data was performed. Genetic analysis of codon 600 of BRAF gene was also performed.ResultsUsing data mining techniques, we obtained a criterion to classify a nodule as benign or malignant on the basis of miRNA expression. The decision model based on the expression of miR-146b, miR-155, and miR-221 was valid for 86/88 nodules with determined cytology (97.73%), and adopting cross-validation techniques we obtained a reliability of 78.41%. The prediction was valid for 31/53 undetermined nodules with 16 false-positive and six false-negative predictions. The mutated form V600E of BRAF gene was demonstrated in 19/43 PTCs and in 1/53 undetermined nodules.ConclusionsThe expression profiles of three miRNAs allowed us to distinguish benign from PTC starting from FNA. When the assay was applied to discriminate thyroid nodules with undetermined cytology, a low sensitivity and specificity despite the low number of false-negative predictions was obtained, limiting the practical interest of the method.


2020 ◽  
Vol 21 (7) ◽  
pp. 722-734
Author(s):  
Adele Soltani ◽  
Arefeh Jafarian ◽  
Abdolamir Allameh

micro (mi)-RNAs are vital regulators of multiple processes including insulin signaling pathways and glucose metabolism. Pancreatic β-cells function is dependent on some miRNAs and their target mRNA, which together form a complex regulative network. Several miRNAs are known to be directly involved in β-cells functions such as insulin expression and secretion. These small RNAs may also play significant roles in the fate of β-cells such as proliferation, differentiation, survival and apoptosis. Among the miRNAs, miR-7, miR-9, miR-375, miR-130 and miR-124 are of particular interest due to being highly expressed in these cells. Under diabetic conditions, although no specific miRNA profile has been noticed, the expression of some miRNAs and their target mRNAs are altered by posttranscriptional mechanisms, exerting diverse signs in the pathobiology of various diabetic complications. The aim of this review article is to discuss miRNAs involved in the process of stem cells differentiation into β-cells, resulting in enhanced β-cell functions with respect to diabetic disorders. This paper will also look into the impact of miRNA expression patterns on in vitro proliferation and differentiation of β-cells. The efficacy of the computational genomics and biochemical analysis to link the changes in miRNA expression profiles of stem cell-derived β-cells to therapeutically relevant outputs will be discussed as well.


Author(s):  
Michela Bulfoni ◽  
Riccardo Pravisani ◽  
Emiliano Dalla ◽  
Daniela Cesselli ◽  
Masaaki Hidaka ◽  
...  

Author(s):  
Wenhui Huang ◽  
Xuefeng Gu ◽  
Yingying Wang ◽  
Yuhan Bi ◽  
Yu. Yang ◽  
...  

2011 ◽  
Vol 119 (4) ◽  
pp. 494-500 ◽  
Author(s):  
Julia E. Rager ◽  
Lisa Smeester ◽  
Ilona Jaspers ◽  
Kenneth G. Sexton ◽  
Rebecca C. Fry

2017 ◽  
Vol 50 (1) ◽  
Author(s):  
Guankui Du ◽  
Man Xiao ◽  
Xuezi Zhang ◽  
Maoyu Wen ◽  
Chi Pang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document