scholarly journals Androgen receptor moonlighting in the prostate cancer microenvironment

2018 ◽  
Vol 25 (6) ◽  
pp. R331-R349 ◽  
Author(s):  
B Cioni ◽  
W Zwart ◽  
A M Bergman

Androgen receptor (AR) signaling is vital for the normal development of the prostate and is critically involved in prostate cancer (PCa). AR is not only found in epithelial prostate cells but is also expressed in various cells in the PCa-associated stroma, which constitute the tumor microenvironment (TME). In the TME, AR is expressed in fibroblasts, macrophages, lymphocytes and neutrophils. AR expression in the TME was shown to be decreased in higher-grade and metastatic PCa, suggesting that stromal AR plays a protective role against PCa progression. With that, the functionality of AR in stromal cells appears to deviate from the receptor’s classical function as described in PCa cells. However, the biological action of AR in these cells and its effect on cancer progression remains to be fully understood. Here, we systematically review the pathological, genomic and biological literature on AR actions in various subsets of prostate stromal cells and aim to better understand the consequences of AR signaling in the TME in relation to PCa development and progression.

2019 ◽  
Vol 12 (2) ◽  
pp. 89
Author(s):  
Janeen H. Trembley ◽  
Betsy T. Kren ◽  
Md. J. Abedin ◽  
Daniel P. Shaughnessy ◽  
Yingming Li ◽  
...  

The prosurvival protein kinase CK2, androgen receptor (AR), and nuclear factor kappa B (NFκB) interact in the function of prostate cells, and there is evidence of crosstalk between these signals in the pathobiology of prostate cancer (PCa). As CK2 is elevated in PCa, and AR and NFκB are involved in the development and progression of prostate cancer, we investigated their interaction in benign and malignant prostate cells in the presence of altered CK2 expression. Our results show that elevation of CK2 levels caused increased levels of AR and NFκB p65 in prostate cells of different phenotypes. Analysis of TCGA PCa data indicated that AR and CK2α RNA expression are strongly correlated. Small molecule inhibition or molecular down-regulation of CK2 caused reduction in AR mRNA expression and protein levels in PCa cells and in orthotopic xenograft tumors by various pathways. Among these, regulation of AR protein stability plays a unifying role in CK2 maintenance of AR protein levels. Our results show induction of various endoplasmic reticulum stress signals after CK2 inhibition, which may play a role in the PCa cell death response. Of note, CK2 inhibition caused loss of cell viability in both parental and enzalutamide-resistant castrate-resistant PCa cells. The present work elucidates the specific link of CK2 to the pathogenesis of PCa in association with AR and NFκB expression; further, the observation that inhibition of CK2 can exert a growth inhibitory effect on therapy-resistant PCa cells emphasizes the potential utility of CK2 inhibition in patients who are on enzalutamide treatment for advanced cancer.


2020 ◽  
Vol 7 (11) ◽  
pp. 5125-5129
Author(s):  
Anandia Putriyuni ◽  
Meta Zulyati Oktora

Prostate cancer is the second most common and the fifth leading cause of death by cancer in men worldwide now. The failure of androgen deprivation therapy (ADT) for prostate cancer caused by activated androgen receptor (AR) signaling pathways mostly found. The role of AR in growth and progression of prostate cancer is still unclear. Analysis of AR expression in prostate cancer has never been done in West Sumatera. This study aims to determine AR expression of prostate cancer and correlate with Gleason score and perineural invasion. A total of 56 prostate cancer from department of anatomical pathology in West Sumatera. Hematoxylin and eosin (HE) stained slides and paraffin blocks were retrieved. Slides of all cases were evaluated to review Gleason score, histopathological grading, WHO grade group based on ISUP 2014/WHO 2016 and perineural invasion. Androgen receptor immunohistochemistry (IHC) was applied on all cases. High AR expression was the mostly found (51,79%). The mostly prostate cancer is Gleason score 9 (44,64%), histopathological grading poorly differentiated/undifferentiated (76,78%), WHO grade group 5 (48,21%). Perineural invasion was noted in 39,29%. There was significant statistical correlation between AR expression and Gleason score, but no significant correlation with perineural invasion. AR expression is the important marker of prostate cancer progression.


2020 ◽  
Vol 65 (2) ◽  
pp. R19-R33
Author(s):  
Dimitrios Doultsinos ◽  
Ian Mills

Prostate cancer is a high-incidence male cancer, which is dependent on the activity of a nuclear hormone receptor, the androgen receptor (AR). Since the AR is required for both normal prostate gland development and for prostate cancer progression, it is possible that prostate cancer evolves from perturbations in AR-dependent biological processes that sustain specialist glandular functions. The archetypal example of course is the use of prostate specific antigen (PSA), an organ-type specific component of the normal prostate secretome, as a biomarker of prostate cancer. Furthermore, localised prostate cancer is characterised by a low proliferative index and a heterogenous array of somatic mutations aligned to a multifocal disease pattern. We and others have identified a number of biological processes that are AR dependent and represent aberrations in significant glandular processes. Glands are characterised by high rates of metabolic activity including protein synthesis supported by co-dependent processes such as glycosylation, organelle biogenesis and vesicle trafficking. Impairments in anabolic metabolism and in protein folding/processing will inevitably impose proteotoxic and oxidative stress on glandular cells and, in particular, luminal epithelial cells for which secretion is their primary function. As cancer develops there is also significant metabolic dysregulation including impaired negative feedback effects on glycolytic and anabolic activity under conditions of hypoxia and heightened protein synthesis due to dysregulated PI 3-kinase/mTOR activity. In this review we will focus on the components of the AR regulome that support cancer development as well as glandular functions focussing on the unfolded protein response and on regulators of mTOR activity.


Sign in / Sign up

Export Citation Format

Share Document