scholarly journals Expression patterns and role of prostaglandin-endoperoxide synthases, prostaglandin E synthases, prostacyclin synthase, prostacyclin receptor, peroxisome proliferator-activated receptor delta and retinoid x receptor alpha in rat endometrium during artificially-induced decidualization

Reproduction ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 537-552 ◽  
Author(s):  
Carolina Gillio-Meina ◽  
Sen Han Phang ◽  
James P Mather ◽  
Brian S Knight ◽  
Thomas G Kennedy

To determine if changes in endometrial expression of the enzymes and receptors involved in prostaglandin (PG) synthesis and action might provide insights into the PGs involved in the initiation of decidualization, ovariectomized steroid-treated rats at the equivalent of day 5 of pseudopregnancy were given a deciduogenic stimulus and killed at various times up to 32 h thereafter. The expression of PG-endoperoxide synthases (PTGS1 and PTGS2), microsomal PGE synthases (PTGES and PTGES2), cytosolic PGE synthase (PTGES3), prostacyclin synthase (PTGIS), prostacyclin receptor, peroxisome proliferator-activated receptor δ (PPARD) and retinoid x receptor α (RXRA) in endometrium was assessed by semiquantitative RT-PCR, western blot analyses and immunohistochemistry. In addition, to determine which PG is involved in mediating decidualization, we compared the ability of PGE2, stable analogues of PGI2, L165041 (an agonist of PPARD), and docasahexanoic acid (an agonist of RXRA) to increase endometrial vascular permeability (EVP, an early event in decidualization), and decidualization when infused into the uterine horns of rats sensitized for the decidual cell reaction (DCR). EVP was assessed by uterine concentrations of Evans blue 10 h after initiation of infusions. DCR was assessed by the uterine mass 5 days after the initiation of the infusions. Because enzymes associated with the synthesis of PGE2, including PTGS2, are up-regulated in response to a deciduogenic stimulus and because PGE2 was more effective than the PGI2 analogues and PPARD and RXRA agonists in increasing EVP and inducing decidualization, we suggest that PGE2 is most likely the PG involved in the initiation of decidualization in the rat.

FEBS Journal ◽  
2007 ◽  
Vol 274 (23) ◽  
pp. 6094-6105 ◽  
Author(s):  
Karine Hellemans ◽  
Karen Kerckhofs ◽  
Jean-Claude Hannaert ◽  
Geert Martens ◽  
Paul Van Veldhoven ◽  
...  

2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Michael A Burke ◽  
Stephen Chang ◽  
Danos C Christodoulou ◽  
Joshua M Gorham ◽  
Hiroko Wakimoto ◽  
...  

The complex molecular networks underpinning DCM remain poorly understood. To study distinct pathways and networks in the longitudinal development of DCM we performed RNAseq on LV tissue from mice carrying a human DCM mutation in phospholamban (PLN R9C/+ ) before phenotype onset (pre-DCM), with DCM, and during overt heart failure (HF), and also on isolated myocytes and non-myocytes from DCM hearts. PLN R9C/+ mice show progressive fibrosis (20% vs. 1% control, p=6x10 −33 ; n=3) associated with proliferation of cardiac non-myocytes (33% increase over control, p=6x10 −4 ; n=3). Consistent with this, cardiac non-myocytes have upregulated gene expression and pathways, while these are generally downregulated in myocytes. Non-myocytes were enriched in fibrosis, inflammation, and cell remodeling pathways, from pre-DCM to HF. In contrast, myocytes were enriched for metabolic pathways only with overt DCM and HF. Myocytes showed profound derangement of oxidative phosphorylation with DCM (p=2.5x10 −41 ; 44% (53/120) of pathway genes downregulated), suggesting mitochondrial dysfunction. Additionally, we detected probable inhibition of peroxisome proliferator-activated receptor (PPAR) signaling by diminished expression of pathway genes (Figure). DCM and hypertrophic remodeling was compared using RNAseq of a mouse model of HCM; similar patterns of fibrosis with myocyte metabolic dysregulation were evident despite unique differential gene expression patterns between models. DCM caused by PLN R9C/+ is associated with early non-myocyte proliferation and later myocyte metabolic derangement possibly governed by altered PPAR signaling, and is common to DCM and HCM.


Sign in / Sign up

Export Citation Format

Share Document