scholarly journals The Aurora kinase inhibitor ZM447439 accelerates first meiosis in mouse oocytes by overriding the spindle assembly checkpoint

Reproduction ◽  
2010 ◽  
Vol 140 (4) ◽  
pp. 521-530 ◽  
Author(s):  
Simon I R Lane ◽  
Heng-Yu Chang ◽  
Phoebe C Jennings ◽  
Keith T Jones

Previous studies have established that when maturing mouse oocytes are continuously incubated with the Aurora inhibitor ZM447439, meiotic maturation is blocked. In this study, we observe that by altering the time of addition of the inhibitor, oocyte maturation can actually be accelerated by 1 h as measured by the timing of polar body extrusion. ZM447439 also had the ability to overcome a spindle assembly checkpoint (SAC) arrest caused by nocodazole and so rescue polar body extrusion. Consistent with the ability of the SAC to inhibit cyclin B1 degradation by blocking activation of the anaphase-promoting complex, we could also observe a rescue in cyclin B1 degradation when ZM447439 was added to nocodazole-treated oocytes. The acceleration of the first meiotic division by ZM447439, which has not been achieved previously, and its effects on the SAC are all consistent with the proposed mitotic role of Aurora B in activating the SAC. We hypothesize that Aurora kinase activity controls the SAC in meiosis I, despite differences to the mitotic cell cycle division in spindle architecture brought about by the meiotic mono-orientation of sister kinetochores.

2012 ◽  
Vol 23 (20) ◽  
pp. 3970-3981 ◽  
Author(s):  
Janet E. Holt ◽  
Simon I. R. Lane ◽  
Phoebe Jennings ◽  
Irene García-Higuera ◽  
Sergio Moreno ◽  
...  

FZR1 is an anaphase-promoting complex (APC) activator best known for its role in the mitotic cell cycle at M-phase exit, in G1, and in maintaining genome integrity. Previous studies also established that it prevents meiotic resumption, equivalent to the G2/M transition. Here we report that mouse oocytes lacking FZR1 undergo passage through meiosis I that is accelerated by ∼1 h, and this is due to an earlier onset of spindle assembly checkpoint (SAC) satisfaction and APCCDC20 activity. However, loss of FZR1 did not compromise SAC functionality; instead, earlier SAC satisfaction was achieved because the bipolar meiotic spindle was assembled more quickly in the absence of FZR1. This novel regulation of spindle assembly by FZR1 led to premature bivalent attachment to microtubules and loss of kinetochore-bound MAD2. Bivalents, however, were observed to congress poorly, leading to nondisjunction rates of 25%. We conclude that in mouse oocytes FZR1 controls the timing of assembly of the bipolar spindle and in so doing the timing of SAC satisfaction and APCCDC20 activity. This study implicates FZR1 as a major regulator of prometaphase whose activity helps to prevent chromosome nondisjunction.


Reproduction ◽  
2005 ◽  
Vol 130 (6) ◽  
pp. 829-843 ◽  
Author(s):  
Hayden A Homer ◽  
Alex McDougall ◽  
Mark Levasseur ◽  
Alison P Murdoch ◽  
Mary Herbert

Mad2 is a pivotal component of the spindle assembly checkpoint (SAC) which inhibits anaphase promoting complex/cyclo-some (APC/C) activity by sequestering Cdc20 thereby regulating the destruction of securin and cyclin B. During mitosis, spindle depolymerisation induces a robust Mad2-dependent arrest due to inhibition of securin and cyclin B destruction. In contrast to mitosis, the molecular details underpinning the meiosis I arrest experienced by mouse oocytes exposed to spindle depolymerisation remain incompletely characterised. Notably, the role of Mad2 and the fate of the anaphase-marker, securin, are unexplored. As shown previously, we find that spindle depolymerisation by nocodazole inhibits first polar body extrusion (PBE) and stabilises cyclin B and cyclin-dependent kinase 1 activity in mouse oocytes. Here we show that stabilisation of cyclin B in nocodazole can be sustained for several hours and is associated with stabilisation of securin. These effects are SAC-mediated as, in oocytes depleted of the majority of Mad2 by morpholino antisense, securin and cyclin B are destabilised and 15% of oocytes undergo PBE. This reflects premature APC/C activation as a mutant form of cyclin B lacking its APC/C degradation signal is stable in Mad2-depleted oocytes. Moreover, homologues do not disjoin during the prolonged meiosis I arrest (> 18 h) induced by nocodaozole indicating that a non-cleavage mechanism is insufficient on its own for resolution of arm cohesion in mammalian oocytes. In conclusion, when all kinetochores lack attachment and tension, mouse oocytes mount a robust Mad2-dependent meiosis I arrest which inhibits the destruction of securin and cyclin B.


2019 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background. OLA1 is a member of the GTPase protein family, unlike other members, it can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods. In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results. Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


1993 ◽  
Vol 104 (3) ◽  
pp. 861-872 ◽  
Author(s):  
M.S. Szollosi ◽  
J.Z. Kubiak ◽  
P. Debey ◽  
H. de Pennart ◽  
D. Szollosi ◽  
...  

Mouse oocyte activation is followed by a peculiar period during which the interphase network of microtubules does not form and the chromosomes remain condensed despite the inactivation of MPF. To evaluate the role of protein phosphorylation during this period, we studied the effects of the protein kinase inhibitor 6-dimethylaminopurine (6-DMAP) on fertilization and/or parthenogenetic activation of metaphase II-arrested mouse oocytes. 6-DMAP by itself does not induce the inactivation of histone H1 kinase in metaphase II-arrested oocytes, and does not influence the dynamics of histone H1 kinase inactivation during oocyte activation. However, 6-DMAP inhibits protein phosphorylation after oocyte activation. In addition, the phosphorylated form of some proteins disappear earlier in oocytes activated in the presence of 6-DMAP than in the activated control oocytes. This is correlated with the acceleration of some post-fertilization morphological events, such as sperm chromatin decondensation and its transient recondensation, formation of the interphase network of microtubules and pronuclear formation. In addition, numerous abnormalities could be observed: (1) the spindle rotation and polar body extrusion are inhibited; (2) the exchange of protamines into histones seems to be impaired, as judged by the morphology of DNA fibrils by electron microscopy; (3) the formation of a new nuclear envelope around the sperm chromatin proceeds prematurely, while recondensation is not yet completed. These observations suggest that the 6-DMAP-sensitive kinase(s) is (are) involved in the control of post-fertilization events such as the formation of the interphase network of microtubules, the remodelling of sperm chromatin and pronucleus formation.


2016 ◽  
Vol 215 (2) ◽  
pp. 143-145 ◽  
Author(s):  
Michael Brandeis

The spindle assembly checkpoint arrests mitotic cells by preventing degradation of cyclin B1 by the anaphase-promoting complex/cyclosome, but some cells evade this checkpoint and slip out of mitosis. Balachandran et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201601083) show that the E3 ligase CRL2ZYG11 degrades cyclin B1, allowing mitotic slippage.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8180 ◽  
Author(s):  
Di Xie ◽  
Juan Zhang ◽  
JinLi Ding ◽  
Jing Yang ◽  
Yan Zhang

Background OLA1 is a member of the GTPase protein family; unlike other members, it possess both GTPase and ATPase activities, and can bind and hydrolyze ATP more efficiently than GTP. OLA1 participates in cell proliferation, oxidative response, protein synthesis and tumorigenesis. However, whether OLA1 is also required for oocyte meiosis is still unknown. Methods In this study, the localization, expression, and functions of OLA1 in the mouse oocyte meiosis were examined. Immunofluorescent and confocal microscopy were used to explore the location pattern of OLA1 in the mouse oocyte. Moreover, nocodazole treatment was used to confirm the spindle-like location of OLA1 during mouse meiosis. Western blot was used to explore the expression pattern of OLA1 in the mouse oocyte. Microinjection of siRNA was used to explore the OLA1 functions in the mouse oocyte meiosis. In addition, chromosome spreading was used to investigate the spindle assembly checkpoint (SAC) activity. Results Immunofluorescent staining showed that OLA1 evenly distributed in the cytoplasm at germinal vesicle (GV) stage. After meiosis resumption (GVBD), OLA1 co-localized with spindles, which was further identified by nocodazole treatment experiments. Knockdown of OLA1 impaired the germinal vesicle breakdown progression and finally resulted in a lower polar body extrusion rate. Immunofluorescence analysis indicated that knockdown of OLA1 led to abnormal spindle assembly, which was evidenced by multipolar spindles in OLA1-RNAi-oocytes. After 6 h post-GVBD in culture, an increased proportion of oocyte which has precociously entered into anaphase/telephase I (A/TI) was observed in OLA1-knockdown oocytes, suggesting that loss of OLA1 resulted in the premature segregation of homologous chromosomes. In addition, the chromosome spread analysis suggested that OLA1 knockdown induced premature anaphase onset was due to the precocious inactivation of SAC. Taken together, we concluded that OLA1 plays important role in GVBD, spindle assembly and SAC activation maintenance in oocyte meiosis.


2019 ◽  
Author(s):  
Zi-Yun Yi ◽  
Tie-Gang Meng ◽  
Xue-Shan Ma ◽  
Jian Li ◽  
Chun-Hui Zhang ◽  
...  

AbstractCell division cycle protein CDC6 is essential for the initiation of DNA replication. CDC6 was recently shown to inhibit the microtubule-organizing activity of the centrosome. Here, we show that CDC6 is localized to the spindle from Pro-MI to MII stages of oocytes, and it plays important roles at two critical steps of oocyte meiotic maturation. CDC6 depletion facilitated the G2/M transition (GV breakdown, GVBD) through regulation of Cdh1 and cyclin B1 expression and CDK1 phosphorylation in a GVBD-inhibiting culture system containing milrinone. Furthermore, GVBD was significantly decreased after knockdown of cyclin B1 in CDC6-depleted oocytes, indicating that the effect of CDC6 loss on GVBD stimulation was mediated, at least in part, by raising cyclin B1. Knockdown of CDC6 also caused abnormal localization of γ-tubulin, resulting in defective spindles, misaligned chromosomes, cyclin B1 accumulation and spindle assembly checkpoint (SAC) activation, leading to significant Pro-MI/MI arrest and PB1 extrusion failure. These phenotypes were also confirmed by time-lapse live cell imaging analysis. The results indicate that CDC6 is indispensable for maintaining G2 arrest of meiosis and functions in G2/M checkpoint regulation in mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.Summary statementWe show that CDC6 is indispensable for maintaining G2 arrest of mouse oocytes. Moreover, CDC6 is also a key player regulating meiotic spindle assembly and metaphase-to-anaphase transition in meiotic oocytes.


2020 ◽  
Vol 26 (9) ◽  
pp. 689-701
Author(s):  
Ahmed Z Balboula ◽  
Karen Schindler ◽  
Tomoya Kotani ◽  
Manabu Kawahara ◽  
Masashi Takahashi

Abstract As the age of child-bearing increases and correlates with infertility, cryopreservation of female gametes is becoming common-place in ART. However, the developmental competence of vitrified oocytes has remained low. The underlying mechanisms responsible for reduced oocyte quality post-vitrification are largely unknown. Mouse cumulus–oocyte complexes were vitrified using a cryoloop technique and a mixture of dimethylsulphoxide, ethylene glycol and trehalose as cryoprotectants. Fresh and vitrified/thawed oocytes were compared for chromosome alignment, spindle morphology, kinetochore-microtubule attachments, spindle assembly checkpoint (SAC) and aneuploidy. Although the majority of vitrified oocytes extruded the first polar body (PB), they had a significant increase of chromosome misalignment, abnormal spindle formation and aneuploidy at metaphase II. In contrast to controls, vitrified oocytes extruded the first PB in the presence of nocodazole and etoposide, which should induce metaphase I arrest in a SAC-dependent manner. The fluorescence intensity of mitotic arrest deficient 2 (MAD2), an essential SAC protein, at kinetochores was reduced in vitrified oocytes, indicating that the SAC is weakened after vitrification/thawing. Furthermore, we found that vitrification-associated stress disrupted lysosomal function and stimulated cathepsin B activity, with a subsequent activation of caspase 3. MAD2 localization and SAC function in vitrified oocytes were restored upon treatment with a cathepsin B or a caspase 3 inhibitor. This study was conducted using mouse oocytes, therefore confirming these results in human oocytes is a prerequisite before applying these findings in IVF clinics. Here, we uncovered underlying molecular pathways that contribute to an understanding of how vitrification compromises oocyte quality. Regulating these pathways will be a step toward improving oocyte quality post vitrification and potentially increasing the efficiency of the vitrification program.


2001 ◽  
Vol 153 (1) ◽  
pp. 137-148 ◽  
Author(s):  
Stephan Geley ◽  
Edgar Kramer ◽  
Christian Gieffers ◽  
Julian Gannon ◽  
Jan-Michael Peters ◽  
...  

Cyclin A is a stable protein in S and G2 phases, but is destabilized when cells enter mitosis and is almost completely degraded before the metaphase to anaphase transition. Microinjection of antibodies against subunits of the anaphase-promoting complex/cyclosome (APC/C) or against human Cdc20 (fizzy) arrested cells at metaphase and stabilized both cyclins A and B1. Cyclin A was efficiently polyubiquitylated by Cdc20 or Cdh1-activated APC/C in vitro, but in contrast to cyclin B1, the proteolysis of cyclin A was not delayed by the spindle assembly checkpoint. The degradation of cyclin B1 was accelerated by inhibition of the spindle assembly checkpoint. These data suggest that the APC/C is activated as cells enter mitosis and immediately targets cyclin A for degradation, whereas the spindle assembly checkpoint delays the degradation of cyclin B1 until the metaphase to anaphase transition. The “destruction box” (D-box) of cyclin A is 10–20 residues longer than that of cyclin B. Overexpression of wild-type cyclin A delayed the metaphase to anaphase transition, whereas expression of cyclin A mutants lacking a D-box arrested cells in anaphase.


Sign in / Sign up

Export Citation Format

Share Document