scholarly journals Ubiquitin-proteasome system participates in the de-aggregation of spermadhesins and DQH protein during boar sperm capacitation

Reproduction ◽  
2019 ◽  
Vol 157 (3) ◽  
pp. 283-295 ◽  
Author(s):  
Michal Zigo ◽  
Vera Jonakova ◽  
Pavla Manaskova-Postlerova ◽  
Karl Kerns ◽  
Peter Sutovsky

We studied the participation of the ubiquitin-proteasome system (UPS) in spermadhesin release during in vitro capacitation (IVC) of domestic boar spermatozoa. At ejaculation, boar spermatozoa acquire low molecular weight (8–16 kDa) seminal plasma proteins, predominantly spermadhesins, aggregated on the sperm surface. Due to their arrangement, such aggregates are relatively inaccessible to antibody labeling. As a result of de-aggregation and release of the outer layers of spermadhesins from the sperm surface during IVC, antibody labeling becomes feasible in the capacitated spermatozoa. In vivo, the capacitation-induced shedding of spermadhesins from the sperm surface is associated with the release of spermatozoa from the oviductal sperm reservoir. We took advantage of this property to perform image-based flow cytometry to study de-aggregation and shedding of boar spermadhesins (AQN, AWN, PSP protein families) and boar DQH (BSP1) sperm surface protein which induces higher fluorescent intensity in capacitated vs ejaculated spermatozoa. Addition of a proteasomal inhibitor (100 µM MG132) during IVC significantly reduced fluorescence intensity of all studied proteins (P < 0.05) compared to vehicle control IVC. Western blot detection of spermadhesins did not support their retention during IVC with proteasomal inhibition (P > 0.99) but showed the accumulation of DQH (P = 0.03) during IVC, compared to vehicle control IVC. Our results thus demonstrate that UPS participates in the de-aggregation of spermadhesins and DQH protein from the sperm surface during capacitation, with a possible involvement in sperm detachment from the oviductal sperm reservoir and/or sperm-zona pellucida interactions. The activity of sperm UPS modulates de-aggregation of boar spermadhesins and DQH sperm surface protein/binder of sperm1 (BSP1) during the sperm capacitation.

2020 ◽  
Vol 21 (11) ◽  
pp. 4151
Author(s):  
Lucie Tumova ◽  
Michal Zigo ◽  
Peter Sutovsky ◽  
Marketa Sedmikova ◽  
Pavla Postlerova

Sperm capacitation, one of the key events during successful fertilization, is associated with extensive structural and functional sperm remodeling, beginning with the modification of protein composition within the sperm plasma membrane. The ubiquitin-proteasome system (UPS), a multiprotein complex responsible for protein degradation and turnover, participates in capacitation events. Previous studies showed that capacitation-induced shedding of the seminal plasma proteins such as SPINK2, AQN1, and DQH from the sperm surface is regulated by UPS. Alterations in the sperm surface protein composition also relate to the porcine β-microseminoprotein (MSMB/PSP94), seminal plasma protein known as immunoglobulin-binding factor, and motility inhibitor. MSMB was detected in the acrosomal region as well as the flagellum of ejaculated boar spermatozoa, while the signal disappeared from the acrosomal region after in vitro capacitation (IVC). The involvement of UPS in the MSMB degradation during sperm IVC was studied using proteasomal interference and ubiquitin-activating enzyme (E1) inhibiting conditions by image-based flow cytometry and Western blot detection. Our results showed no accumulation of porcine MSMB either under proteasomal inhibition or under E1 inhibiting conditions. In addition, the immunoprecipitation study did not detect any ubiquitination of sperm MSMB nor was MSMB detected in the affinity-purified fraction containing ubiquitinated sperm proteins. Based on our results, we conclude that UPS does not appear to be the regulatory mechanism in the case of MSMB and opening new questions for further studies. Thus, the capacitation-induced processing of seminal plasma proteins on the sperm surface may be more complex than previously thought, employing multiple proteolytic systems in a non-redundant manner.


2005 ◽  
Vol 41 ◽  
pp. 173-186 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

The ubiquitin–proteasome system (UPS) is believed to degrade the major contractile skeletal muscle proteins and plays a major role in muscle wasting. Different and multiple events in the ubiquitination, deubiquitination and proteolytic machineries are responsible for the activation of the system and subsequent muscle wasting. However, other proteolytic enzymes act upstream (possibly m-calpain, cathepsin L, and/or caspase 3) and downstream (tripeptidyl-peptidase II and aminopeptidases) of the UPS, for the complete breakdown of the myofibrillar proteins into free amino acids. Recent studies have identified a few critical proteins that seem necessary for muscle wasting {i.e. the MAFbx (muscle atrophy F-box protein, also called atrogin-1) and MuRF-1 [muscle-specific RING (really interesting new gene) finger 1] ubiquitin–protein ligases}. The characterization of their signalling pathways is leading to new pharmacological approaches that can be useful to block or partially prevent muscle wasting in human patients.


2005 ◽  
Vol 41 (1) ◽  
pp. 173 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

2020 ◽  
Author(s):  
Jon Uranga ◽  
Lukas Hasecke ◽  
Jonny Proppe ◽  
Jan Fingerhut ◽  
Ricardo A. Mata

The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document