skeletal muscle wasting
Recently Published Documents


TOTAL DOCUMENTS

236
(FIVE YEARS 76)

H-INDEX

45
(FIVE YEARS 6)

Author(s):  
Jorne Ubachs ◽  
Wouter R.P.H. Worp ◽  
Rianne D.W. Vaes ◽  
Kenneth Pasmans ◽  
Ramon C. Langen ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Rohit Chatterjee ◽  
Joshua Huot ◽  
Fabrizio Pin ◽  
Andrea Bonetto

Background and Hypothesis: We and others have shown that chemotherapy promotes skeletal muscle wasting and weakness (i.e., cachexia) by disrupting mitochondrial homeostasis and causing oxidative stress. Peroxisome proliferative-activated receptor gamma coactivator 1-alpha (PGC1α) is a pivotal regulator of mitochondrial biogenesis and is involved in reducing oxidative damage in skeletal muscle. Hence, in the present study we investigated whether overexpression of skeletal muscle PGC1α (mPGC1α) was sufficient to preserve skeletal muscle mass and function in young and old mice treated with cisplatin. Experimental Design or Project Methods: Young (2-month; n = 5) and old (18-month; n = 5-8) male wild type (WT) or mPGC1α transgenic mice were treated with cisplatin (2.5mg/kg), while age-matched WT mice received vehicle for 2 weeks. Animals were assessed for muscle force and motor unit number estimation (MUNE). Skeletal muscles were weighed and processed for molecular analyses, including assessment of mitochondrial protein content. Results: Young WT mice exposed to cisplatin showed evidence of cachexia, as indicated by reduced gastrocnemius size (-16%), plantarflexion force (-8%) and MUNE (-56%), whereas mPGC1α mice were only partially protected. Interestingly, despite exacerbated cachexia in aged WT mice treated with chemotherapy, as demonstrated by markedly decreased gastrocnemius size (-22%), plantarflexion force (-18%) and MUNE (-80%) compared to untreated WT, muscle mass, strength and innervation were fully preserved in age-matched mPGC1α mice. Follow-up molecular analyses revealed that WT animals exposed to chemotherapy present loss of muscle mitochondrial proteins PGC1α, OPA1 and CytochromeC, whereas their levels in mPGC1α mice were robustly increased. Conclusion and Potential Impact: Altogether, our data suggest that PGC1α plays a pivotal role in preserving skeletal muscle mass and function, usually impaired by anticancer treatments. These findings enforce developing mitochondria-targeting therapeutics to combat the negative consequences that chemotherapy has on skeletal muscle.


Author(s):  
Shawna L. McMillin ◽  
Everett C. Minchew ◽  
Dawn A. Lowe ◽  
Espen E. Spangenburg

The importance of defining sex differences across various biological and physiological mechanisms is more pervasive now than it has been over the last 15-20 years. As the muscle biology field pushes to identify small molecules and interventions to prevent, attenuate or even reverse muscle wasting, we must consider the effect of sex as a biological variable. It should not be assumed that a therapeutic will affect males and females with equal efficacy or equivalent target affinities under conditions where muscle wasting is observed. With that said, it is not surprising to find that we have an unclear or even a poor understanding of the effects of sex or sex hormones on muscle wasting conditions. Although recent investigations are beginning to establish experimental approaches that will allow investigators to assess the impact of sex-specific hormones on muscle wasting, the field still has not established enough published scientific tools that will allow the field to rigorously address critical hypotheses. Thus, the purpose of this review is to assemble a current summary of knowledge in the area of sexual dimorphism driven by estrogens with an effort to provide insights to interested physiologists on necessary considerations when trying to assess models for potential sex differences in cellular and molecular mechanisms of muscle wasting.


2021 ◽  
Author(s):  
Brian Czaya ◽  
Kylie Heitman ◽  
Isaac Campos ◽  
Christopher Yanucil ◽  
Dominik Kentrup ◽  
...  

Elevations in plasma phosphate concentrations (hyperphosphatemia) occur in chronic kidney disease (CKD), in certain genetic disorders, and following the intake of a phosphate-rich diet. Whether hyperphosphatemia and/or associated changes in metabolic regulators, including elevations of fibroblast growth factor 23 (FGF23) directly contribute to specific complications of CKD is uncertain. Here we report that similar to patients with CKD, mice with adenine-induced CKD develop inflammation, anemia and skeletal muscle wasting. These complications are also observed in mice fed high phosphate diet even without CKD. Ablation of pathologic FGF23-FGFR4 signaling did not protect mice on an increased phosphate diet or mice with adenine-induced CKD from these sequelae. However, low phosphate diet ameliorated anemia and skeletal muscle wasting in a genetic mouse model of CKD. Our mechanistic in vitro studies indicate that phosphate elevations induce inflammatory signaling and increase hepcidin expression in hepatocytes, a potential causative link between hyperphosphatemia, anemia and skeletal muscle dysfunction. Our study suggests that high phosphate intake, as caused by the consumption of processed food, may have harmful effects irrespective of pre-existing kidney injury, supporting not only the clinical utility of treating hyperphosphatemia in CKD patients but also arguing for limiting phosphate intake in healthy individuals.


2021 ◽  
Vol 22 (17) ◽  
pp. 9163
Author(s):  
Amy D. Mackay ◽  
Erik D. Marchant ◽  
Makensie Louw ◽  
David M. Thomson ◽  
Chad R. Hancock

Though effective in treating various types of cancer, the chemotherapeutic doxorubicin (DOX) is associated with skeletal muscle wasting and fatigue. The purpose of this study was to assess muscle function in situ following DOX administration in mice. Furthermore, pre-treatments with exercise (EX) or metformin (MET) were used in an attempt to preserve muscle function following DOX. Mice were assigned to the following groups: control, DOX, DOX + EX, or DOX + MET, and were given a single injection of DOX (15 mg/kg) or saline 3 days prior to sacrifice. Preceding the DOX injection, DOX + EX mice performed 60 min/day of running for 5 days, while DOX + MET mice received 5 daily oral doses of 500 mg/kg MET. Gastrocnemius–plantaris–soleus complex function was assessed in situ via direct stimulation of the sciatic nerve. DOX treatment increased time to half-relaxation following contractions, indicating impaired recovery (p < 0.05). Interestingly, EX prevented any increase in half-relaxation time, while MET did not. An impaired relaxation rate was associated with a reduction in SERCA1 protein content (p = 0.07) and AMPK phosphorylation (p < 0.05). There were no differences between groups in force production or mitochondrial respiration. These results suggest that EX, but not MET may be an effective strategy for the prevention of muscle fatigue following DOX administration in mice.


2021 ◽  
Vol 13 (605) ◽  
pp. eaay9592
Author(s):  
Roberta Sartori ◽  
Adam Hagg ◽  
Sandra Zampieri ◽  
Andrea Armani ◽  
Catherine E. Winbanks ◽  
...  

Most patients with advanced solid cancers exhibit features of cachexia, a debilitating syndrome characterized by progressive loss of skeletal muscle mass and strength. Because the underlying mechanisms of this multifactorial syndrome are incompletely defined, effective therapeutics have yet to be developed. Here, we show that diminished bone morphogenetic protein (BMP) signaling is observed early in the onset of skeletal muscle wasting associated with cancer cachexia in mouse models and in patients with cancer. Cancer-mediated factors including Activin A and IL-6 trigger the expression of the BMP inhibitor Noggin in muscle, which blocks the actions of BMPs on muscle fibers and motor nerves, subsequently causing disruption of the neuromuscular junction (NMJ), denervation, and muscle wasting. Increasing BMP signaling in the muscles of tumor-bearing mice by gene delivery or pharmacological means can prevent muscle wasting and preserve measures of NMJ function. The data identify perturbed BMP signaling and denervation of muscle fibers as important pathogenic mechanisms of muscle wasting associated with tumor growth. Collectively, these findings present interventions that promote BMP-mediated signaling as an attractive strategy to counteract the loss of functional musculature in patients with cancer.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1974
Author(s):  
Dulce Peris-Moreno ◽  
Mélodie Malige ◽  
Agnès Claustre ◽  
Andrea Armani ◽  
Cécile Coudy-Gandilhon ◽  
...  

The ubiquitin proteasome system (UPS) is the main player of skeletal muscle wasting, a common characteristic of many diseases (cancer, etc.) that negatively impacts treatment and life prognosis. Within the UPS, the E3 ligase MuRF1/TRIM63 targets for degradation several myofibrillar proteins, including the main contractile proteins alpha-actin and myosin heavy chain (MHC). We previously identified five E2 ubiquitin-conjugating enzymes interacting with MuRF1, including UBE2L3/UbcH7, that exhibited a high affinity for MuRF1 (KD = 50 nM). Here, we report a main effect of UBE2L3 on alpha-actin and MHC degradation in catabolic C2C12 myotubes. Consistently UBE2L3 knockdown in Tibialis anterior induced hypertrophy in dexamethasone (Dex)-treated mice, whereas overexpression worsened the muscle atrophy of Dex-treated mice. Using combined interactomic approaches, we also characterized the interactions between MuRF1 and its substrates alpha-actin and MHC and found that MuRF1 preferentially binds to filamentous F-actin (KD = 46.7 nM) over monomeric G-actin (KD = 450 nM). By contrast with actin that did not alter MuRF1–UBE2L3 affinity, binding of MHC to MuRF1 (KD = 8 nM) impeded UBE2L3 binding, suggesting that differential interactions prevail with MuRF1 depending on both the substrate and the E2. Our data suggest that UBE2L3 regulates contractile proteins levels and skeletal muscle atrophy.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3615
Author(s):  
Dean G. Campelj ◽  
Craig A. Goodman ◽  
Emma Rybalka

Cancer cachexia is a debilitating multi-factorial wasting syndrome characterised by severe skeletal muscle wasting and dysfunction (i.e., myopathy). In the oncology setting, cachexia arises from synergistic insults from both cancer–host interactions and chemotherapy-related toxicity. The majority of studies have surrounded the cancer–host interaction side of cancer cachexia, often overlooking the capability of chemotherapy to induce cachectic myopathy. Accumulating evidence in experimental models of cachexia suggests that some chemotherapeutic agents rapidly induce cachectic myopathy, although the underlying mechanisms responsible vary between agents. Importantly, we highlight the capacity of specific chemotherapeutic agents to induce cachectic myopathy, as not all chemotherapies have been evaluated for cachexia-inducing properties—alone or in clinically compatible regimens. Furthermore, we discuss the experimental evidence surrounding therapeutic strategies that have been evaluated in chemotherapy-induced cachexia models, with particular focus on exercise interventions and adjuvant therapeutic candidates targeted at the mitochondria.


Sign in / Sign up

Export Citation Format

Share Document