Historical development of glass and ceramic waste forms for high level radioactive wastes

Author(s):  
C.M. Jantzen
1981 ◽  
Vol 6 ◽  
Author(s):  
G. Bandyopadhyay

ABSTRACTSeveral simulated interim waste forms have been investigated in the laboratory to study their suitability for application in handling and transportation of high-level radioactive wastes to terminal processing sites. In the fused-salt/sludge option, the neutralized supernatant liquid and the precipitated sludge are treated simultaneously to form fused-salt cakes. Silicate-based options, in which sodium silicate or sodium silicate and Ca(OH)2 act as binders for the sludge, require prior separation of the sludge and the soluble radioactive constituents from the supernatant before the waste form can be prepared. The results from tests on simulated fused-salt waste forms indicated that the process simplicity of this option is partially offset by the high water solubility and hygroscopicity of the product, which would necessitate special precautions during transportation and storage. The most promising silicate-based option is the ambienttemperature silicate sludge process, in which the sludge is mixed with sodium silicate [and sometimes with Ca(OH)2] and subsequently exposed to a contrelled-humidity environment at room temperature to form a chemical bond. Solid material containing 75 wt % synthetic calcined sludge, prepared by this process, has sufficient physical, chemical, and mechanical stability for use as an interim waste form.


2010 ◽  
Vol 73 ◽  
pp. 130-135 ◽  
Author(s):  
Eric R. Vance ◽  
S. Moricca ◽  
Bruce D. Begg ◽  
M.W.A. Stewart ◽  
Y. Zhang ◽  
...  

Hot isostatic pressing (HIP) is a technology with wide applicability in consolidating calcined intermediate-level and high-level nuclear waste, especially with wastes that are not able to be readily processed by vitrification at reasonable waste loadings. The essential process steps during the HIP cycle will be outlined. We have demonstrated the effective consolidation via HIP technology of a wide variety of tailored glass-ceramic and ceramic waste forms, notably simulated ICPP waste calcines, I sorbed upon zeolite beads, Pu-bearing wastes, inactive Cs/Sr/Rb/Ba mixtures, simulated waste pyroprocessing salts from spent nuclear fuel recycling, Tc, U-rich isotope production waste, and simulated K-basin (Hanford, WA, USA) and Magnox sludges (UK). Can-ceramic interactions have been carefully studied. The principal advantages of the HIP technology include: negligible offgas during the high temperature consolidation step, relatively small footprint, and high waste loadings. As a batch process, the wasteform chemistry can be readily adjusted on a given process line, to deliver wastes into different end states (e.g. direct HIP versus chemically tailored). This flexibility allows the treatment of multiple waste streams on the one process line.


High-level wastes (HLW) can be incorporated in the crystal lattices of coexisting phases in ceramic waste forms. The properties and performances of ceramic waste forms are largely determined by their phase chemistry, phase assemblage and microstructure. Currently, the best categorized advanced ceramic waste form is SYNROC, a titanate ceramic composed of ‘ hollandite ’ Bat 1(Al,Ti)2^Ti|]*"70 16, zirconolite CaZrTi 2 O 7 , perovskite CaTiO 3 , rutile TiO 2 and minor amounts of metal alloys microencapsulated by the titanate matrix. Two factors contribute to the capacity of synroc to accommodate high (e.g. 20% ) loadings of HLW, together with variations in waste-stream composition. Firstly, the constituent phases can accept, as solid solutions in their crystal lattices, a broad spectrum of cationic species of diverse charge and radius, either singly or by complex substitution mechanisms. Secondly, the phase assemblage itself spontaneously adjusts its modal mineralogy in response to waste stream fluctuations. The presence of both rutile and a source of trivalent titanium (from reaction of rutile with added Ti metal) in the synroc phase assemblage is largely responsible for this flexible and accommodating nature. The titanate minerals in synroc also occur in Nature, where they have survived for many millions of years in a wide range of geological environments. Experimental studies show that synroc is vastly more resistant to leaching by groundwater than borosilicate glass; moreover, its high leach resistance is maintained at elevated temperatures. Experimental and analogue studies indicate that the HLW immobilization properties of synroc are not significantly impaired by radiation damage. These properties show that synroc would provide an effective immobilization barrier for HLW when buried in suitable repositories. They also permit the use of a wider range of geological disposal options than are appropriate for borosilicate glass. In particular, synroc is well suited for disposal in deep drill-holes, both in continental and marine environments. The fact that synroc is composed of minerals that have demonstrated long-term geological stability is important in establishing public confidence in the ability of the nuclear industry to immobilize high-level wastes for the very long periods required.


1996 ◽  
Vol 465 ◽  
Author(s):  
T. P. O'Holleran ◽  
S. G. Johnson ◽  
S. M. Frank ◽  
M. K. Meyer ◽  
M. Noy ◽  
...  

ABSTRACTResults are reported on several new glass and glass-ceramic waste formulations for plutonium disposition. The approach proposed involves employing existing calcined high level waste (HLW) present at the Idaho Chemical Processing Plant (ICPP) as an additive to: 1) aid in the formation of a durable waste form and 2) decrease the attractiveness level of the plutonium from a proliferation viewpoint. The plutonium, PuO2, loadings employed were 15 wt% (glass) and 17 wt% (glass-ceramic). Results in the form of x-ray diffraction patterns, microstructure and durability tests are presented on cerium surrogate and plutonium loaded waste forms using simulated calcined HLW and demonstrate that durable phases, zirconia and zirconolite, contain essentially all the plutonium.


Sign in / Sign up

Export Citation Format

Share Document