Damage resistance and tolerance of thick laminated woven roving GFRP plates subjected to low-velocity impact

Author(s):  
G ZHOU ◽  
L J GREAVES
2017 ◽  
Vol 176 ◽  
pp. 516-525 ◽  
Author(s):  
Zhefeng Yu ◽  
Jicheng Fang ◽  
Yan Chen ◽  
Hai Wang

2019 ◽  
Vol 57 (2) ◽  
pp. 179-190
Author(s):  
Marina Bunea ◽  
Iulian Gabriel Birsan ◽  
Adrian Circiumaru

The low velocity impact response of hybrid epoxy composites reinforced with plain weave fabrics, ply orientation at various angles and filled stratified matrix was analyzed in this study. The hybrid epoxy composites were subjected to impact tests at 45J and 90J of energy levels with drop weight impact machine. The damaged areas were investigated by visual inspection of impacted and non-impacted surfaces and by tomographic images. It was found that the replacement of certain carbon inner plies with glass ones and the modification of fiber orientation improved the damage resistance of the hybrid composites with aramid outer layers subjected to impact loading at 45J of energy level.


2008 ◽  
Vol 47-50 ◽  
pp. 1205-1208 ◽  
Author(s):  
Iqbal Kosar ◽  
Khan Shafi Ullah ◽  
Jang Kyo Kim ◽  
Arshad Munir

The influence of nanoclay on the impact damage resistance of carbon fiber-epoxy (CFRP) composites has been investigated using the low-velocity impact and compression after impact tests. The load-energy vs time relations were analyzed to gain insight into the damage behaviors of the materials. Compression-after-impact (CAI) test was performed to measure the residual compressive strength. The CFRPs containing organoclay brought about a significant improvement in impact damage resistance and damage tolerance. The composites containing organoclay exhibited an enhanced energy absorption capability with less damage areas and higher CAI strengths compared to those made from neat epoxy. A 3wt% phr was shown to be an optimal content with the highest damage resistance.


2020 ◽  
pp. 096739112093818
Author(s):  
Naseer H Farhood ◽  
Saravanan Karuppanan ◽  
Hamdan H Ya ◽  
MTH Sultan

Recently, the incorporation of several different types of fibers into a single matrix has led to the development of superior hybrid composite properties at a cheaper cost. Fiber hybridization is one of the active strategies to toughen composites and improve impact damage resistance. However, the extraordinary high strength and stiffness of the carbon fiber as well as its lower damage tolerance make it more susceptible under the impact loading. This article mainly aims to improve impact damage resistance of carbon fiber pipes through fiber hybridization strategy with glass fibers under low-velocity impact. The composite pipes reinforced with thin internal liner of high-density polyethylene were fabricated through filament winding technology. Eight pipe configurations with different stacking sequences and fiber content ratios with a constant winding angle of [Formula: see text] were fabricated and tested under impact energies, 50 and 100 J. The damage characterization was evaluated using the optical imaging and mechanical micrograph sectioning technique. Results indicate that the hybrid configurations showed better energy absorption than reference carbon fibers specimen under 50 J impact energy. Specifically, specimens with glass fibers on the exterior side and alternative configuration of carbon–glass fibers showed better impact resistance with less damage observed. Meanwhile, the specimens with glass fiber on the exterior side suffered from extreme damage with increase in the energy absorption and maximum displacement for both fiber content ratios under 100 J of impact energy.


Sign in / Sign up

Export Citation Format

Share Document