scholarly journals Homomorphisms and functional calculus in algebras of entire functions on Banach spaces

2015 ◽  
Vol 7 (1) ◽  
pp. 108-113 ◽  
Author(s):  
H.M. Pryimak

In the paper the homomorphisms of algebras of entire functions on Banach spaces to a commutative Banach algebra are studied. In particular, it is proposed a method of constructing of homomorphisms vanishing on homogeneous polynomials of degree less or equal than a fixed number $n$.

2019 ◽  
Vol 11 (1) ◽  
pp. 158-162
Author(s):  
H.M. Pryimak

It is known due to R. Aron, B. Cole and T. Gamelin that every complex homomorphism of the algebra of entire functions of bounded type on a Banach space $X$ can be approximated in some sense by a net of point valued homomorphism. In this paper we consider the question about a generalization of this result for the case of homomorphisms to any commutative Banach algebra $A.$ We obtained some positive results if $A$ is the algebra of uniformly continuous analytic functions on the unit ball of $X.$


2021 ◽  
Vol 56 (1) ◽  
pp. 106-112
Author(s):  
S.I. Halushchak

The theory of analytic functions is an important section of nonlinear functional analysis.In many modern investigations topological algebras of analytic functions and spectra of suchalgebras are studied. In this work we investigate the properties of the topological algebras of entire functions,generated by countable sets of homogeneous polynomials on complex Banach spaces. Let $X$ and $Y$ be complex Banach spaces. Let $\mathbb{A}= \{A_1, A_2, \ldots, A_n, \ldots\}$ and $\mathbb{P}=\{P_1, P_2,$ \ldots, $P_n, \ldots \}$ be sequences of continuous algebraically independent homogeneous polynomials on spaces $X$ and $Y$, respectively, such that $\|A_n\|_1=\|P_n\|_1=1$ and $\deg A_n=\deg P_n=n,$ $n\in \mathbb{N}.$ We consider the subalgebras $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y)$ of the Fr\'{e}chet algebras $H_b(X)$ and $H_b(Y)$ of entire functions of bounded type, generated by the sets $\mathbb{A}$ and $\mathbb{P}$, respectively. It is easy to see that $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y)$ are the Fr\'{e}chet algebras as well. In this paper we investigate conditions of isomorphism of the topological algebras $H_{b\mathbb{A}}(X)$ and $H_{b\mathbb{P}}(Y).$ We also present some applications for algebras of symmetric analytic functions of bounded type. In particular, we consider the subalgebra $H_{bs}(L_{\infty})$ of entire functions of bounded type on $L_{\infty}[0,1]$ which are symmetric, i.e. invariant with respect to measurable bijections of $[0,1]$ that preserve the measure. We prove that$H_{bs}(L_{\infty})$ is isomorphic to the algebra of all entire functions of bounded type, generated by countable set of homogeneous polynomials on complex Banach space $\ell_{\infty}.$


2019 ◽  
Vol 11 (1) ◽  
pp. 42-47 ◽  
Author(s):  
I.V. Chernega ◽  
A.V. Zagorodnyuk

Let $\{P_n\}_{n=0}^\infty$ be a sequenceof continuous algebraically independent  homogeneous polynomials on a complex Banach space $X.$ We consider the following question: Under which conditions polynomials $\{P_1^{k_1}\cdots P_n^{k_n}\}$ form a Schauder (perhaps absolute) basis in the minimal subalgebra of entire functions of bounded type on $X$ which contains the sequence $\{P_n\}_{n=0}^\infty$? In the paper we study the following examples: when $P_n$ are coordinate functionals on $c_0,$ and when $P_n$ are symmetric polynomials on $\ell_1$ and on $L_\infty[0,1].$ We can see that for some cases $\{P_1^{k_1}\cdots P_n^{k_n}\}$ is a Schauder basis which is not absolute but for some cases it is absolute.


Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 150
Author(s):  
Andriy Zagorodnyuk ◽  
Anna Hihliuk

In the paper we establish some conditions under which a given sequence of polynomials on a Banach space X supports entire functions of unbounded type, and construct some counter examples. We show that if X is an infinite dimensional Banach space, then the set of entire functions of unbounded type can be represented as a union of infinite dimensional linear subspaces (without the origin). Moreover, we show that for some cases, the set of entire functions of unbounded type generated by a given sequence of polynomials contains an infinite dimensional algebra (without the origin). Some applications for symmetric analytic functions on Banach spaces are obtained.


2018 ◽  
Vol 11 (02) ◽  
pp. 1850021 ◽  
Author(s):  
A. Zivari-Kazempour

We prove that each surjective Jordan homomorphism from a Banach algebra [Formula: see text] onto a semiprime commutative Banach algebra [Formula: see text] is a homomorphism, and each 5-Jordan homomorphism from a unital Banach algebra [Formula: see text] into a semisimple commutative Banach algebra [Formula: see text] is a 5-homomorphism.


2006 ◽  
Vol 49 (1) ◽  
pp. 39-52 ◽  
Author(s):  
Yun Sung Choi ◽  
Domingo Garcia ◽  
Sung Guen Kim ◽  
Manuel Maestre

AbstractIn this paper, we introduce the polynomial numerical index of order $k$ of a Banach space, generalizing to $k$-homogeneous polynomials the ‘classical’ numerical index defined by Lumer in the 1970s for linear operators. We also prove some results. Let $k$ be a positive integer. We then have the following:(i) $n^{(k)}(C(K))=1$ for every scattered compact space $K$.(ii) The inequality $n^{(k)}(E)\geq k^{k/(1-k)}$ for every complex Banach space $E$ and the constant $k^{k/(1-k)}$ is sharp.(iii) The inequalities$$ n^{(k)}(E)\leq n^{(k-1)}(E)\leq\frac{k^{(k+(1/(k-1)))}}{(k-1)^{k-1}}n^{(k)}(E) $$for every Banach space $E$.(iv) The relation between the polynomial numerical index of $c_0$, $l_1$, $l_{\infty}$ sums of Banach spaces and the infimum of the polynomial numerical indices of them.(v) The relation between the polynomial numerical index of the space $C(K,E)$ and the polynomial numerical index of $E$.(vi) The inequality $n^{(k)}(E^{**})\leq n^{(k)}(E)$ for every Banach space $E$.Finally, some results about the numerical radius of multilinear maps and homogeneous polynomials on $C(K)$ and the disc algebra are given.


2016 ◽  
Vol 160 (3) ◽  
pp. 413-421 ◽  
Author(s):  
TOMASZ KANIA ◽  
NIELS JAKOB LAUSTSEN

AbstractA recent result of Leung (Proceedings of the American Mathematical Society, 2015) states that the Banach algebra ℬ(X) of bounded, linear operators on the Banach space X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓ1 contains a unique maximal ideal. We show that the same conclusion holds true for the Banach spaces X = (⊕n∈$\mathbb{N}$ ℓ∞n)ℓp and X = (⊕n∈$\mathbb{N}$ ℓ1n)ℓp whenever p ∈ (1, ∞).


2007 ◽  
Vol 135 (10) ◽  
pp. 3181-3186
Author(s):  
Janko Bračič ◽  
Martin Jesenko

Sign in / Sign up

Export Citation Format

Share Document