scholarly journals Heat Capacity of Decagonal and Icosahedral Quasicrystalline Phases at High Temperatures

2020 ◽  
Vol 21 (2) ◽  
pp. 260-265
Author(s):  
Yu. V. Syrovatko ◽  
O. O. Levkovich

The paper deals with the calculations of heat capacity of quasicrystalline decagonal Al69Co21Ni10 and icosahedral Al63Cu25Fe12 quasicrystalline phases of Al–Co–Ni and Al–Cu–Fe alloys, respectively. According to the Gruneisen law, heat capacity is an energy characteristic, which reflects the phases’ resistance to failure. For calculations of the heat capacity, structure of quasicrystalline phases is considered in the model representation of anisotropic crystals. As a result, it is found that the heat capacity of quasicrystalline phases at high temperatures is the excessive one, i.e. it exceeds the Dulong-Petit value. Therefore, quasicrystalline phases at high temperatures are more stable, than the crystalline phase. For the decagonal quasicrystalline phase, heat capacity is more than 3R in the temperature range of ~480–1500 К, and for the icosahedral quasicrystalline phase – in the temperature range of ~380–1120 К. It follows that decagonal phases remain stable at high temperatures at which the icosahedral phases are destroyed.

2000 ◽  
Vol 42 (12) ◽  
pp. 2177-2183 ◽  
Author(s):  
M. N. Mikheeva ◽  
G. Kh. Panova ◽  
A. A. Teplov ◽  
M. N. Khlopkin ◽  
N. A. Chernoplekov ◽  
...  

1999 ◽  
Vol 40 (10) ◽  
pp. 1181-1184 ◽  
Author(s):  
Akihisa Inoue ◽  
Tao Zhang ◽  
Junji Saida ◽  
Mitsuhide Matsushita ◽  
Min Wei Chen ◽  
...  

2000 ◽  
Vol 15 (6) ◽  
pp. 1280-1283 ◽  
Author(s):  
M. Matsushita ◽  
J. Saida ◽  
C. Li ◽  
A. Inoue

A nanoscale icosahedral quasicrystalline phase was confirmed as a primary precipitation phase in the melt-spun Zr70TM10Pd20 (TM = Fe, Co, or Cu) ternary glassy alloys with a two-stage crystallization process. The onset temperature of the transformation from amorphous to icosahedral phase is 713 K for Fe-, 696 K for Co-, and 680 K for Cu-containing alloys at the heating rate of 0.67 Ks−1. The size of the icosahedral particles is in the range of 20 to 50 nm for the Zr70Cu10Pd20 glassy alloy annealed for 120 s at 720 K. The icosahedral phase has a very fine particle size in a diameter range below 10 nm for the Zr70Fe10Pd20 and Zr70Co10Pd20 alloys. The crystallization reaction after the first exothermic peak results in the transition from the icosahedral to crystalline phases through a sharp exothermic reaction. Thus, the formation of the nanoscale icosahedral phase indicates the possibility that an icosahedral short-range order exists in the present glassy alloys.


2001 ◽  
Vol 16 (6) ◽  
pp. 1535-1540 ◽  
Author(s):  
S. M. Lee ◽  
B. H. Kim ◽  
D. H. Kim ◽  
W. T. Kim

Formation of the icosahedral quasicrystalline phase in conventionally cast Al62Cu25.5Fe12.5 and Al55Cu25.5Fe12.5Be7 alloys were investigated. The icosahedral phase (I-phase) forming ability was greatly improved by partial replacement of Al by 7 at.% Be. The as-cast Al55Cu25.5Fe12.5Be7 alloy consisted of dendritic primary I-phase and interdendritic τ-phase, whereas that of an as-cast Al62Cu25.5Fe12.5 alloy consisted of various phases such as the β-, I-, and τ-phases, together with a small amount of the λ- and η-phases. The kinetic barrier for transformation into single I-phase by heat treatment was greatly reduced in an Al55Cu25.5Fe12.5Be7 alloy. The I-phase in an Al55Cu25.5Fe12.5Be7 alloy has the same face centered icosahedral structure as that in an Al62Cu25.5Fe12.5 alloy and is of high quality without phason strain.


Sign in / Sign up

Export Citation Format

Share Document