scholarly journals De Novo Genome Assembly and Comparative Genomics of the Barley Leaf Rust Pathogen Puccinia hordei Identifies Candidates for Three Avirulence Genes

2019 ◽  
Vol 9 (10) ◽  
pp. 3263-3271 ◽  
Author(s):  
Jiapeng Chen ◽  
Jingqin Wu ◽  
Peng Zhang ◽  
Chongmei Dong ◽  
Narayana M. Upadhyaya ◽  
...  

Puccinia hordei (Ph) is a damaging pathogen of barley throughout the world. Despite its importance, almost nothing is known about the genomics of this pathogen, and a reference genome is lacking. In this study, the first reference genome was assembled for an Australian isolate of Ph (“Ph560”) using long-read SMRT sequencing. A total of 838 contigs were assembled, with a total size of 207 Mbp. This included both haplotype collapsed and separated regions, consistent with an estimated haploid genome size of about 150Mbp. An annotation pipeline that combined RNA-Seq of Ph-infected host tissues and homology to proteins from four other Puccinia species predicted 25,543 gene models of which 1,450 genes were classified as encoding secreted proteins based on the prediction of a signal peptide and no transmembrane domain. Genome resequencing using short-read technology was conducted for four additional Australian strains, Ph612, Ph626, Ph608 and Ph584, which are considered to be simple mutational derivatives of Ph560 with added virulence to one or two of three barley leaf rust resistance genes (viz. Rph3, Rph13 and Rph19). To identify candidate genes for the corresponding avirulence genes AvrRph3, AvrRph13 and AvrRph19, genetic variation in predicted secreted protein genes between the strains was correlated to the virulence profiles of each, identifying 35, 29 and 46 candidates for AvrRph13, AvrRph3 and AvrRph19, respectively. The identification of these candidate genes provides a strong foundation for future efforts to isolate these three avirulence genes, investigate their biological properties, and develop new diagnostic tests for monitoring pathogen virulence.

Euphytica ◽  
2007 ◽  
Vol 158 (1-2) ◽  
pp. 139-151 ◽  
Author(s):  
Getaneh Woldeab ◽  
Chemeda Fininsa ◽  
Harjit Singh ◽  
Jonathan Yuen ◽  
Jose Crossa

2020 ◽  
Author(s):  
PM Dracatos ◽  
RF Park ◽  
D Singh

Improving resistance to barley leaf rust (caused by Puccinia hordei) is an important breeding objective in most barley growing regions worldwide. The development and subsequent utilisation of high-throughput PCR-based co-dominant molecular markers remains an effective approach to select genotypes with multiple effective resistance genes, permitting efficient gene deployment and stewardship. The genes Rph20 and Rph24 confer widely effective adult plant resistance (APR) to leaf rust, are common in European and Australian barley germplasm (often in combination), and act interactively to confer high levels of resistance (Dracatos et al. 2015; Zeims et al. 2017; Singh et al. 2018). Here we report on the development and validation of co-dominant insertion-deletion (indel) based PCR markers that are highly predictive for the Rph20 and Rph24 resistances.


Plant Disease ◽  
2020 ◽  
Author(s):  
P. M. Dracatos ◽  
Robert F Park ◽  
Davinder Singh

Improving resistance to barley leaf rust (caused by Puccinia hordei) is an important breeding objective in most barley growing regions worldwide. The development and subsequent utilization of high-throughput polymerase chain reaction (PCR) based co-dominant molecular markers remains an effective approach to select genotypes with multiple effective resistance genes, permitting efficient gene deployment and stewardship. The genes Rph20 and Rph24, which confer widely effective adult plant resistance (APR) to leaf rust, are common in European and Australian barley germplasm (often in combination), and act interactively to confer high levels of resistance. Here we report on the development and validation of co-dominant insertion-deletion (indel) based PCR markers that are highly predictive for the resistance alleles Rph20.ai and Rph24.an (both referred to as Rph20 and Rph24).


2007 ◽  
Vol 26 (8) ◽  
pp. 1193-1202 ◽  
Author(s):  
G. Woldeab ◽  
J. Yuen ◽  
C. Fininsa ◽  
H. Singh

Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 838-838 ◽  
Author(s):  
M. N. Rouse ◽  
C. A. Griffey ◽  
W. S. Brooks

Barley leaf rust, caused by Puccinia hordei Otth., has been problematic in United States barley (Hordeum vulgare L.) production in the Mid-Atlantic coast region and California. During the early 1990s, P. hordei pathotypes with virulence to resistance gene Rph7 caused average yield losses from 6 to 16% (3). ‘Doyce’ barley was released in 2003 and was described as being resistant to leaf rust (2). Initially in April 2010 and subsequently in spring 2011 and 2012, high severities and infection responses were observed on experimental plots of ‘Doyce’ in Warsaw and Blacksburg, Virginia. Three single uredinial isolates of P. hordei were derived from collections made from ‘Doyce’ barley. The isolates were characterized for virulence to barley leaf rust resistance genes by inoculating at least two replicates of a barley leaf rust differential set including 12 Rph genes (1). Previous methods used for inoculation, incubation, and pathotyping were followed (1). Infection types were scored on a 0 to 4 scale where 2 and below indicated resistance and 3 and above indicated susceptibility (4). The three isolates collected from Doyce barley displayed large pustules with infection types 3,3+ to cultivars Estate (Rph3) and Cebada Capa (Rph7). Avirulent isolates of P. hordei displayed infection types 0; to 0;1c to Estate and ;n to 0;1n to Cebada Capa (1). The data indicated that all three isolates were virulent to both barley leaf rust resistance genes Rph3 and Rph7. Though combined Rph3 and Rph7 virulence has been reported in the Mediterranean region, this is the first report of Rph3 virulence in North America. These isolates of P. hordei are virulent to important sources of resistance to barley leaf rust and threaten barley production in environments conducive for disease development in North America. References: (1) W. S. Brooks et al. Phytopathology 90:1131, 2000. (2) W. S. Brooks et al. Crop Sci. 45:792, 2005. (3) C. A. Griffey et al. Plant Dis. 78:256, 1994. (4) M. N. Levine and W. J. Cherewick. U.S. Dept. Agric. Tech. Bull. 1056, 1952.


Agronomie ◽  
2000 ◽  
Vol 20 (7) ◽  
pp. 769-782 ◽  
Author(s):  
Rients E. Niks ◽  
Ursula Walther ◽  
Heidi Jaiser ◽  
Fernando Martinez ◽  
Diego Rubiales

Sign in / Sign up

Export Citation Format

Share Document